• Title/Summary/Keyword: $FEV_{1.0}$

Search Result 366, Processing Time 0.023 seconds

Interpretation of Bronchodilator Response in Patients with Obstructive Airway Disease (폐쇄성 기도 질환자에서 기관지 확장제 반응에 대한 평가)

  • Choi, Hee-Jin;Kim, Ki-Bum;Cho, Young-Bock;Cho, Ihn-Ho;Chung, Jin-Hong;Lee, Kwan-Ho;Lee, Hyun-Woo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.42 no.3
    • /
    • pp.332-341
    • /
    • 1995
  • Background: Measurement of bronchodilator response is necessary to establish reversibility of airflow obstruction that was helpful to estimate the diagnosis, treatment, and prognosis in obstructive airway disease. An useful index should be able to detect the bronchodilator response more sensitively not related with degree of airflow obstruction and also be independent of initial $FEV_1$. Method: Sensitivities of bronchodilator response in each group classified by degree of airflow obstruction in $FEV_1$, FVC, $FEF_{25\sim75%}$, Isovolume $FEF_{25\sim75%}$, sGaw were studied and correlation coefficients were calculated between initial $FEV_1$ and reversibilities expressed as absolute, %initial, % predicted, %possible in $FEV_1$. Result: Sensitivities of bronchodilator response were 61.5% in FVC, Isovolume $FEF_{25\sim75%}$ and sGaw, in severe group, and 56.3% in Isovolume $FEF_{25\sim75%}$ and sGaw, in moderate group, and 62.5% in $FEV_1$ and sGaw and 50.0% in FVC and Isovolume $FEF_{25\sim75%}$, in mild group, and 60.0% in sGaw and 58.0% in Isovolume $FEF_{25\sim75%}$ in total patients. Correlation coefficients between initial $FEV_1$(L) and absolute, % initial, % predicted, % possible were 0.15, -0.22(p<0.05), 0.02, 0.24(p<0.05) and correlation coefficients between initial $FEV_1$(% predicted) and absolute, % initial, % predicted, %possible were 0.06, -0.28(p<0.05), 0.08, 0.39(p<0.05). Conclusion: Volume related parameters were more sensitive index not related with degree of airway obstruction and the change in $FEV_1$ expressed as % predicted was the least dependent on initial $FEV_1$ and reversibilities, expressed as % initial or as % possible(predicted minus initial $FEV_1$)were correlated with initial $FEV_1$.

  • PDF

Studies on the Indirect Measuring Method of the Maximum Voluntary Ventilation (최대환기능의 간접측정법에 관한 연구)

  • Park, Hae-Kun;Kim, Kwang-Jin;Sung, Hae-Sook;Jeon, Byung-Sook
    • The Korean Journal of Physiology
    • /
    • v.11 no.2
    • /
    • pp.45-50
    • /
    • 1977
  • The maximum voluntary ventilation (MVV) is one of the most widely used pulmonary function test, but its measuring method was very difficult and unreliable. However, it is need to get more easy and simple measuring method of MVV. Therefore, this study was attempted to get more easy and simple measuring method of MVV by means of the forced expiratory volume $(FEV_{T})$. The young and healthy 1,000 Korean students(592 male and 408 female) were cheesed for this purpose and whose ages were from 8 to 20 years. A spirometer (9L, Collins Co.) was used for the MVV and FEV, and they were measured 3 times at standing position, and the highest value was used. In the measurements, the subjects for MVV were asked for the breath as fast and deeply as possible for 12 seconds, and for FEV were asked for the rapid and forceful exhalation after a maximal inhalation (forced expiratory curve). In the FEV measurements toward the end of the expiration, the subjects were exhaused to continue the effort until no further gas was expired. During these measurements, the investigator stood by the subject to give a constant encouragement. FEV were calculated in the volume exhaled during the one-half $(FEV_{0{\cdot}5,}\;ml)$, the first second $(FEV_{1{\cdot}0,}\;ml)$ and the percentage of the total vital capacity exhaled during the one-half second $(FEV_{0{\cdot}5,}\;%)$. The results are summarized as follows: 1) The values of MVV were increased linearly with ages until 20 in both sexes. The values of male at the age of 20 was $168.2{\pm}2.5L/min$, and female at the age of 17 was $112.3{\pm}3.0L/min$, respectively. 2) The values of FEV (ml) were increased linearly with ages until 20 in both sexes. The values of $FEV_{0{\cdot}5}$ were $2,797{\pm}65.7ml$ in the male of 20 years and were $2,088{\pm}54.6ml$ in the female of 17 years, and of $FEV_{1{\cdot}0$ were $4,119{\pm}68.2ml$ in the male of 20 years and were $2,897{\pm}65.9ml$ in the female of 17 years, respectively. 3) The correlation coefficients between MVV and $FEV_{0{\cdot}5}\;or\;FEV_{1{\cdot}0$ (ml) were 0.82 or 0.85 in the male, and 0.77 or 0.79 in the female, respectively. 4) The prediction formulae for MVV to be derived from above results were: For male: MVV (L/min) =7.19+$0.05{\times}FEV_{0\cdot5}(ml)$, MVV (L/min)=11.25+$0.04{\times}FEV_{1\cdot0}(ml)$ For female: MVV (L/min)=16.03+$0.05{\times}FEV_{0\cdot5}(ml)$, MVV (L/min)=9.47+$0.03{\times}FEV_{1\cdot0}(ml)$.

  • PDF

A comparison between impulse oscillometry system and spirometry for spirometry for detecting airway obstruction in children (소아의 기도 폐쇄 평가에서 impulse oscillometry system과 폐활량 측정법의 비교)

  • Hur, Hae Young;Kwak, Ji Hee;Kim, Hyoung Yun;Jung, Da Wun;Shin, Yoon Ho;Han, Man Yong
    • Clinical and Experimental Pediatrics
    • /
    • v.51 no.8
    • /
    • pp.842-847
    • /
    • 2008
  • Purpose : Measurement of forced expiratory volume in 1 second ($FEV_1$) is usually difficult to obtain in children under six years of age because it requires active cooperation. This study evaluates the sensitivity of impulse oscillometry system (IOS) parameters for detecting airway obstruction in comparison with $FEV_1$. Methods : We studied 174 children who performed the lung function and methacholine challenge tests to diagnose asthma by IOS and spirometry. Children were divided into two subgroups according to their $PC_{20}$, which is a parameter for bronchial sensitivity. We compared IOS parameters with $FEV_1$ at the baseline, post-methacholine challenge, and evaluated their correlation. Results : At the baseline, reactance at 5 Hz (X5) and resistance at 5 Hz (R5) significantly differed between the $PC_{20}$ positive ($PC_{20}{\leq}16mg/mL$) group and $PC_{20}$ negative ($PC_{20}$ >16 mg/mL) group; however, $FEV_1$, $FEV_1$ % predicted, $FEV_1_-Zs$ (Z score) did not differ. $FEV_1$ is correlated with X5 (r=0.45, P<0.01) and R5 (r=-0.69, P<0.01). $FEV_1_-Zs$ is also correlated with X5_Zs (r=-0.26, P<0.01) and R5_Zs (r=-0.31, P<0.01). After the methacholine challenge test, dose-response slopes in $FEV_1$ and X5 significantly differed between the two subgroups (P<0.05). Conclusion : IOS parameters were more discriminative than $FEV_1$ for detecting decreased baseline lung function between two subgroups and have a good correlation with $FEV_1$.

The Changes of Respiratory Functions Following Postures in Cerebral Palsy : Spastic Diplegia (뇌성마비의 유형별 자세에 따른 호흡기능의 변화 : 경직성 양하지마비)

  • Song Ju-Young
    • The Journal of Korean Physical Therapy
    • /
    • v.16 no.4
    • /
    • pp.115-128
    • /
    • 2004
  • The purpose of this study was to evaluate respiratory functions in relation to the gross motor functions(total value of GMFM), the difference of chest girth, and the changing position in spastic children. The respiratory functions(FVC, FEV1, $FEV1\%$, and PEF) were measured in the supine, the $45^{\circ}$semi-sitting, and the $45^{\circ}$sitting in 9 subjects. In the supine position, the mean difference of chest girth was $1.56{\pm}0.80cm$, the total value of GMFM was $45.41{\pm}17.79\%$. In the supine position, there was significant positive relationship in FVC-FEV1, FVC-PEF, and FEV1-PEF, but there was no significant relationship in GMFM and all respiratory functions. In the $45^{\circ}$semi-sitting, there was significant positive relationship in GMFM-FVC, FVC-FEV1, FVC-PEF, FEV1-PEF, and $FEV1\%-PEF$. In the $90^{\circ}$sitting, there was significant positive relationship in GMFM-FEV1, $GMFM-FEV1\%$, FVC-FEV1, FVC-PEF, and FEV1-PEF. In results of measured respiratory functions according to the postures, the supine position had highest value in all respiratory functions, but there were no significant (p<0.05).

  • PDF

Correlations Between Height and Forced Expiratory Flow Curve Parameters (신장과 노력성 호기곡선 지표간의 상관성)

  • Jin, Bok Hee;Park, Sun Young;Park, Hyea Lim
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.36 no.2
    • /
    • pp.199-204
    • /
    • 2004
  • Height has become one of the most important factors to determine the pulmonary function test index, and there is a high correlation between them, so that they have been utilized for evaluating pulmonary function test predictive value or nomogram. Therefore, we have tried to find out that difference and if there is any correlation and linear relationship between height and forced expiratory flow curve. There were a total of 163 subjects, male 93 and female 70. This study was done at the Department of Pulmonary Function Test of Jeon-Ju Presbyterian Hospital and we measured the index at the forced expiratory flow curve of FVC, $FEV_{1.0}$, $FEV_{1.0}$/FVC, $FEF_{25-75%}$, and $FEF_{200-1200m{\ell}}$. When we subjected the group of height more than 160cm, there were gradual increments at FVC(p<0.001), $FEV_{1.0}$(p<0.001), $FEF_{25-75%}$(p<0.05) and $FEF_{200-1200m{\ell}}$(p<0.001), but no changes at $FEV_{1.0}$/FVC in terms of forced expiratory flow curve index. We have analyzed the relationship between height and forced expiratory flow curve, there was a close relationship at FVC(r=0.670, p<0.01), $FEV_{1.0}$(r=0.491, p<0.01), $FEF_{25-75%}$ (r=0.175, p<0.05) and $FEF_{200-1200m{\ell}}$(r=0.370, p<0.01) but there was reciprocal relationship at $FEV_{1.0}$/FVC(r=-0.215, p<0.01). We have tried simple regression analysis to see if height affects forced expiratory flow curve index as a sector, and the result was $FVC(\ell)=0.0642{\times}height(cm)-7.2978$(p<0.01, $R^2=0.449$), $FEV_{1.0}(\ell)=0.0407{\times}height(cm)-4.2774$ (p<0.01, $R^2=0.2411$), $FEV_{1.0}/FVC(%)=-0.2892{\times}height(cm)+121.44$(p<0.01, $R^2=0.0464$), $FEF_{25-75%}(\ell/sec)=0.0176{\times}height(cm)-0.7876$(p<0.05, $R^2=0.0237$), $FEF_{200-1200m{\ell}}(\ell/sec)=0.0967{\times}height(cm)-11.037$(p<0.01, $R^2=0.1214$) this was approved statistically. According to this study, if height is taller than average, forced expiratory flow curve index were increased, there was a close relationship between height and forced expiratory flow curve, and there was a linear relationship as sector between height and forced expiratory flow curve index. Therefore, researches that study other factors such as sex, age, weight, body surface area, and obesity indexes other than height should be done to see if there are any further relationships.

  • PDF

Analysis of Protease and Antiprotease Concentrations in Retired Workers Exposed to Inorganic Dusts

  • Shin, Jae-Hoon;Hwang, Joo-Hwan;Lee, Kyung-Myung;Lee, Jong-Seong;Lee, Jeong-Oh;Choi, Byung-Soon;Kim, In-Sik
    • Biomedical Science Letters
    • /
    • v.15 no.4
    • /
    • pp.309-317
    • /
    • 2009
  • Occupational exposure to inorganic dusts such as coal and silica has been identified as a chronic obstructive pulmonary disease (COPD) risk factor. This risk factor causes lung inflammation and protease-antiprotease imbalance. This abnormal inflammatory response of the lung induces parenchymal tissue destruction and leads to progressive airflow limitation that is characteristics of COPD. The aim of this study was to determine the relationship of proteases such as neutrophil elastase (NE) and matrix metalloproteinase (MMP)-9 and antiproteases such as alpha-1 antitrypsin (AAT) and tissue inhibitors of metalloproteinase (TIMP)-1 with lung function. The study population contained 223 retired workers exposed to inorganic dusts. We performed lung function test, including percent of forced expiratory volume in one second ($%FEV_1$) predicted and $%FEV_1$/forced vital capacity (FVC). We analyzed serum MMP-9, AAT, TIMP-1 and plasma NE concentrations by sandwich enzyme immunoassay. NE, AAT, and TIMP-1 concentrations in workers, who had $%FEV_1$<80% predicted, were higher than those of workers who had $%FEV_1{\geq}80%$ (P<0.05). Both AAT and TIMP-1 concentrations in workers with airflow limitation were higher than those of workers with normal airflow (P<0.05). $%FEV_1$ predicted showed significant negative correlation with AAT (r=-0.255, P<0.0l), TIMP-1 (r=-0.232, P<0.01), and NE (r=-0.196, P<0.01). $%FEV_1$/FVC predicted showed significant negative correlation with NE (r=-0.172, P<0.05). From the results of stepwise multiple regression analysis about $%FEV_1$ and $%FEV_1$/FVC, significant independents were NE (r=-0.135, P=0.001) and AAT (r=-0.100, P=0.013) in $%FEV_1$, and NE (r=-0.160, P=0.014) in $%FEV_1$/FVC. In the present study, there were significant correlations between airflow limitation and protease concentration and between airflow limitation and antiprotease concentration. Serum protease and antiprotease concentrations, however, may be affected by the biological and inflammatory responses. It is necessary to evaluate specimens more reflected the effects of proteases and antiproteases in the lung such as lung tissue, bronchoalveolar lavage fluid, and exhaled breath condensate (EBC).

  • PDF

Correlations between Body Indices and FEV1 in Pulmonary Function Test (신체지표와 폐기능 검사 1초량간의 상관성)

  • Jin, Bok-Hee;Park, Sun-Young
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.37 no.3
    • /
    • pp.207-211
    • /
    • 2005
  • Body index is known as it affects pulmonary function tests (PFT), so it has been used with predictive formula and nomogram in terms of sex, age, height, etc. Body indices as body weight, body mass index (BMI), and body surface area (BSA) might also affect PFT, so that we have analyzed the correlations between body indices and forced expiratory volume in one second ($FEV_1$), and have done multiple regression analysis to see how body indices affect $FEV_1$. We confirmed that $FEV_1$ had positive correlations with height (r=0.49, p<0.01), body weight (r=0.37, p<0.01), and BSA (r=0.47, p<0.01), inverse correlation with age (r=-0.45, p<0.01), but no correlation with BMI. We found that the 41.9% of $FEV_1$ was diverged from height, age and BSA. Therefore, BSA definitely needs to be considered with predictive formula and nomogram in PFT.

  • PDF

The Agreements between FEV1 and PEFR in the Patients of Mild Bronchial Asthma (외래 진료가 가능한 경증 천식 환자에서 1초간 노력성 호기량(FEV1)과 최대 호기유속(PEFR)간의 연관성)

  • Chang, Won Chul;Kim, Byung Kook;Kim, Soon Jong;Yoo, Kwang Ha;Lee, Tae-Hun;Lee, Jung Yeon;Lee, Kye Young
    • Tuberculosis and Respiratory Diseases
    • /
    • v.59 no.6
    • /
    • pp.638-643
    • /
    • 2005
  • Background : Several studies have shown considerable disagreement when using the $FEV_1$ and PEFR to assess the severity of an airflow obstruction. A differential classification of the severity of asthma would lead to serious differences in the evaluation and management of asthma. The aim of this study was to examine the relationship between the $FEV_1$ and PEFR in asthma patients with mild symptoms. Methods : In this study, the PEFR and $FEV_1$ were obtained from 92 adult asthma patients with mild symptoms attending an outpatient pulmonary clinic. The mean differences and the limits of agreement in the paired measurements of the $FEV_1$ and PEFR were calculated. Results : There was a considerable correlation between the $FEV_1$ and PEFR measurements when expressed as a % of the predicted values (r=0.686, p<0.01). The 95% limit of agreement (mean difference ${\pm}1.96SD$) between the $FEV_1$ % and PEFR % were acceptable(-27.4%~33.8%). In addition, the weighted ${\kappa}$(kappa) coefficient for the agreement between the $FEV_1$ % and PEFR % was 0.74 (95% CI, 0.63-0.81), indicating excellent agreement between the two measurements. Conclusion : The spirometer ($FEV_1$) and the Mini-Wright peak flow meter (PEFR) can be used interchangeably in adult asthma patients with mild symptom.

Changes in Forced Expiratory Volume in 1 Second after Anatomical Lung Resection according to the Number of Segments

  • Lee, Sun-Geun;Lee, Seung Hyong;Cho, Sang-Ho;Song, Jae Won;Oh, Chang-Mo;Kim, Dae Hyun
    • Journal of Chest Surgery
    • /
    • v.54 no.6
    • /
    • pp.480-486
    • /
    • 2021
  • Background: Although various methods are already used to calculate predicted postoperative forced expiratory volume in 1 second (FEV1) based on preoperative FEV1 in lung surgery, the predicted postoperative FEV1 is not always the same as the actual postoperative FEV1. Observed postoperative FEV1 values are usually the same or higher than the predicted postoperative FEV1. To overcome this issue, we investigated the relationship between the number of resected lung segments and the discordance of preoperative and postoperative FEV1 values. Methods: From September 2014 to May 2020, the data of all patients who underwent anatomical lung resection by video-assisted thoracoscopic surgery (VATS) were gathered and analyzed retrospectively. We investigated the association between the number of resected segments and the differential FEV1 (a measure of the discrepancy between the predicted and observed postoperative FEV1) using the t-test and linear regression. Results: Information on 238 patients who underwent VATS anatomical lung resection at Kyung Hee University Hospital at Gangdong and by DH. Kim for benign and malignant disease was collected. After applying the exclusion criteria, 114 patients were included in the final analysis. In the multiple linear regression model, the number of resected segments showed a positive correlation with the differential FEV1 (Pearson r=0.384, p<0.001). After adjusting for multiple covariates, the differential FEV1 increased by 0.048 (95% confidence interval, 0.023-0.073) with an increasing number of resected lung segments (R2=0.271, p<0.001). Conclusion: In this study, after pulmonary resection, the number of resected segments showed a positive correlation with the differential FEV1.

Inspiratory Flow Rate for the Evaluation of Bronchodilator in Patients with COPD (만성폐쇄성폐질환 환자에서 기관지확장제 흡입에 대한 흡기환기지표의 반응)

  • Baik, Jae-Joong;Park, Keon-Uk;Chung, Yeon-Tae
    • Tuberculosis and Respiratory Diseases
    • /
    • v.42 no.3
    • /
    • pp.342-350
    • /
    • 1995
  • Background: Although there are improvements of clinical symtoms after bronchodilator inhalation in COPD patients, it has been noted that there was no increase of $FEV_1$ in some cases. $FEV_1$ did not reflect precisely the improvement of ventilatory mechanics after bronchodilator inhalation in these COPD patients. The main pathophysiology of COPD is obstruction of airway in expiratory phase but in result, the load of respiratory system is increased in inspiratory phase. Therefore the improvement of clinical symptoms after bronchodilator inhalation may be due to the decrease of inspiratory load. So we performed the study which investigated the effect of bronchodilator on inspiratory response of vetilatory mechanics in COPD patients. Methods: In 17 stable COPD patients, inspiratory and expiratory forced flow-volume curves were measured respectively before bronchodilator inhalation. 10mg of salbutamol solution was inhaled via jet nebulizer for 4 minutes. Forced expiratory and inspiratory flow-volume curves were measured again 15 minutes after bronchodilator inhalation. Results: $FEV_1$, FVC and $FEV_1$/FVC% were $0.92{\pm}0.34L$($38.3{\pm}14.9%$ predicted), $2.5{\pm}0.81L$($71.1{\pm}21.0%$ predicted) and $43.1{\pm}14.5%$ respectively before bronchodilator inhalation. The values of increase of $FEV_1$, FVC and PIF(Peak Inspiratory Flow) were $0.15{\pm}0.13L$(relative increase: 17.0%), $0.58{\pm}0.38\;L$(29.0%) and $1.0{\pm}0.56L$/sec(37.5%) respectively after bronchodilator inhalation. The increase of PIF was twice more than $FEV_1$ in average(p<0.001). The increase of PIF in these patients whose $FEV_1$ was not increased after bronchodilator inhalation were 35.0%, 44.0% and 55.5% respectively. Conclusion: The inspiratory parameter reflected improvement of ventilatory mechanics by inhaled bronchodilater better than expiratory parameters in COPD patients.

  • PDF