• Title/Summary/Keyword: $Eu^{3+}$ and $Tb^{3+}$

Search Result 61, Processing Time 0.024 seconds

Solvent Extraction of Eu3+ and Tb3+ Ions with 12-Crown-4 15-Crown-5 and 18-Crown-6 (12-Crown-4, 15-Crown-5 및 18-Crown-6에 의한 Eu(Ⅲ) 및 Tb(Ⅲ)의 용매추출)

  • Kim, Eun-Jeong;Yoon, Soo-Kyung;Bae, Jun-Hyun;Kang, Jun-Gil;Kim, Youn-Doo
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.4
    • /
    • pp.266-274
    • /
    • 1995
  • The extractions of aqueous Eu3+ and Tb3+ ions into ethylacetate or dichloromethane were conducted by using 12-crown-4, 15-crown-5 and 18-crown-6 ethers as ligand. Benzoate ion was selected as counter anion for the complexes formed between the lanthanide ions and crown ethers. Fluorescence spectra of the lanthanide ions induced by the energy transfer from benzoate anion to the cations were also measured. The quantitative analysis of the lanthanide ions extracted into organic phase were made on the basis of the results of fluorescence. The measured extractivity is interpreted in terms of the ion-dipole interaction.

  • PDF

Luminescence and Crystal-Field Analysis of Europium and Terbium Complexes with Oxydiacetate and 1,10-Phenanthroline

  • Kang, Jun-Gill;Kim, Tack-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.7
    • /
    • pp.1057-1064
    • /
    • 2005
  • Photoluminescence (PL) spectra of Eu(III) and Tb(III) complexes with mixed oxydiacetate (ODA) and 1,10-phenanthroline (phen) ligands and with homoleptic ODA reveal characteristic line-splitting at 10 K, depending on the site-symmetry of the lanthanide ion in the complex. The energy-level schemes of the $^7F_J$ states and the emitting levels for Eu(III) and Tb(III) ions have been proposed by simulating the line splitting in the framework of crystal-field Hamiltonian. The sets of refined crystal-field parameters for the experimentally determined sitesymmetry satisfactorily reproduce the experimental energy-level schemes. In addition, the PL quantum yield and the decay time were determined at room temperature. The PL quantum yields of [$Eu(ODA){\cdot}(phen){\cdot}4H_2O]^+$ and [Tb$(ODA){\cdot}(phen){\cdot}4H_2O]^+$ in the crystalline state (Q = 17.7 and Q = 56.6%, respectively) are much greater than those of [Eu($ODA)_3]^{3-}and\;[Tb(ODA)_3]^{3-}$(Q = 1.1 and Q = 1.3, respectively), due to the energy transfer from phen to the lanthanide ion. In the aqueous state, the relaxation of the phen moiety due to the solvent results in the reduction of the quantum yield and the shortening of the lifetime.

Synthesis and photoluminescence of Ca3Si3O8F2: Ce4+, Eu3+, Tb3+ phosphor

  • Suresh, K.;PoornachandraRao, Nannapaneni V.;Murthy, K.V.R.
    • Advances in materials Research
    • /
    • v.3 no.4
    • /
    • pp.227-232
    • /
    • 2014
  • $Ce^{4+}$, $Eu^{3+}$, $Tb^{3+}$ co-doped $Ca_3Si_3O_8F_2$ phosphor was synthesized via solid state reaction method using $CaF_2$, $CaCO_3$ and $SiO_2$ as raw materials for the host and $Eu_2O_3$, $CeO_2$, and $Tb_4O_7$ as activators. The luminescent properties of the phosphor was analysed by spectrofluorophotometer at room temperature. The effect of excitation wavelengths on the luminescent properties of the phosphor i.e. under near-ultraviolet (nUV) and visible excitations was investigated. The emission peaks of $Ce^{4+}$, $Eu^{3+}$, $Tb^{3+}$ co-doped $Ca_3Si_3O_8F_2$ phosphor lays at 480(blue band), 550(green band) and 611nm (red band) under 380nm excitation wavelength, attributed to the $Ce^{4+}$ ion, $Tb^{3+}$ ion and $Eu^{3+}$ ions respectively. The results reveal that the phosphor emits white light upon nUV (380nm) / visible (465nm) illumination, and a red light upon 395nm / 535nm illumination. RE ions doped $Ca_3Si_3O_8F_2$ is a promising white light phosphor for LEDs. The emission colours can be seen using Commission international de l'eclairage (CIE) co-ordinates. A single host phosphor emitting different colours under different excitations indicates that it is a potential phosphor having applications in many fields.

Photoluminescence Properties of BiNbO4:RE3+ (RE = Dy, Eu, Sm, Tb) Phosphors (BiNbO4:RE3+ (RE = Dy, Eu, Sm, Tb) 형광체의 광학 특성)

  • Lee, Sangwoon;Cho, Shinho
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.3
    • /
    • pp.206-211
    • /
    • 2017
  • $BiNbO_4:RE^{3+}$ (RE = Dy, Eu, Sm, Tb) phosphors were prepared by solid-state reaction at $1100^{\circ}C$ and their structural, photoluminescent, and morphological properties were investigated. XRD patterns exhibited that all the synthesized phosphors exhibited a triclinic system with a dominant (210) diffraction peak, irrespective of the type of activator ions. The surface morphologies of rare-earth-ion-doped $BiNbO_4$ phosphors were found to depend strongly on the type of activator ions. The $Eu^{3+}$ and $Dy^{3+}$ doped $BiNbO_4$ phosphors revealed a strong red (613 nm) emission resulting from the $^5D_0{\rightarrow}^7F_2$ transition of $Eu^{3+}$ and a dominant yellow (575 nm) emission originating from the $^4F_{9/2}{\rightarrow}^6H_{13/2}$ transition of $Dy^{3+}$ respectively, which were the electric dipole transitions, indicating that the activator ions occupy sites of non-inversion symmetry in the $BiNbO_4$ phosphor. The main reddish-orange emission spectra of $Sm^{3+}$-doped $BiNbO_4$ phosphors were due to the $^4G_{5/2}{\rightarrow}^6H_{7/2}$ (607 nm) magnetic dipole transition, indicating that the $Sm^{3+}$ ions were located at inversion symmetry sites in the $BiNbO_4$ host lattice. As for $Tb^{3+}$-doped phosphors, green emission was obtained under excitation at 353 nm and its CIE chromaticity coordinates were (0.274, 0.376). These results suggest that multicolor emission can be achieved by changing the type of activator ions incorporated into the $BiNbO_4$ host crystal.

A New Analytical Method for the $Eu^{+3}$ and $Tb^{+3}$ Ions Using the Luminescence Enhancement by the Treatment of o-Phenanthroline on the Nylon Membrane (Nylon Membrane Filter에서의 발광증폭을 이용한 $Eu^{+3}$$Tb^{+3}$ 이온의 극미량 분석법)

  • An, Seong-Hee;Lee, Byung-Min;Park, Jong-Mok;Kim, Hai-Dong;Jeong, Hyuk
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.9
    • /
    • pp.705-714
    • /
    • 1995
  • A new analytical luminescence method for the Eu+3 and Tb+3 ions was studied using the luminescence enhancement by the treatment of the o-phenanthroline on the nylon membrane. Compared to the specific emission intensities of the ions in aqueous(or ethanol) solution, if the aqueous ion is spotted on the nylon membrane, the luminescence intensities were extremely enhanced. There was additional enhancement effect of the luminescence intensities of the ions on the nylon membrane, if the ion on the nylon membrane is treated with o-phenanthroline. Based on the luminescence enhancement, the detection limits were lowered by more than 7 order of magnitude compared to that of solution sample, and also lowered by about 1 order of magnitude compared to that of previous TLC method. The dynamic ranges and correlation coefficients of the calibration curves near the detection limit were 2∼3 order and ∼0.99, respectively. It was also shown that the luminescence intensity was in its maximum when the ion on the nylon is treated with ∼4 mole ratio of o-phenanthroline. The energy-transfer mechanism was explained for the theoretical background of the luminescence enhancement.

  • PDF

Near IR Spectroscopic Studies on the Interaction between Acetamide and Lu$(dpm)_3$ in Carbon Tetrachloride

  • 최영상;김홍순;유정아;이상원;박정희;윤창주
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.6
    • /
    • pp.511-514
    • /
    • 1996
  • The interactions between Ln(dpm)3 [Ln3+=Eu3+, Yb3+, Pr3+, Sm3+, Tb3+and Ho3+; dpm=tris 2,2,6,6-tetramethylheptane-3,5-dionate] and acetamide in CCl4 solution were investigated using near IR absorption spectroscopy. From the measured 2 νC=O+ amide Ⅲ combination band of acetamide in the region of 2130-2180 nm(4695-4587 cm-1), it was found that acetamide is coordinating through its carbonyl oxygen atom to Ln(dpm)3[C=O…Ln(dpm)3)] and forms only 1 : 1 stoichiometric Ln(dpm)3- acetamide complex. The ΔHo values for the formation of Ln(dpm)3-acetamide obtained from the temperature studies are -39.1, -28.4, -25.5, -24.7, -21.1 and -17.7 kJ mol-1 for Eu(dpm)3, Yb(dpm)3, Pr(dpm)3, Sm(dpm)3, Tb(dpm)3 and Ho(dpm)3, respectively, which are larger than those of the hydrogen bond between amide and various hydrogen acceptors. Except Eu(dpm)3 and Yb(dpm)3, -ΔHovalue increases as the ionic size increases.

A Study on the Various Organic Electroluminescent Devices Using Lanthanide Chelate Metal Complexes (란탄계 금속 착화합물을 이용한 다양한 유기 전기 발광 소자의 연구)

  • 표상우;김윤명;이한성;김정수;이승희;김영관
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.5
    • /
    • pp.437-443
    • /
    • 2000
  • In this study several lanthanide complexes such as Eu(TTA)$_3$(Phen), Tb(ACAC)$_3$-(Cl-Phen) were synthesized and the white-light electroluminescence(EL) characteristics of their thin films were investigated where the devices having structures of anode/TPD/Tb(ACAC)$_3$(Cl-Phen)/Eu(TTA)$_3$(Phen)/Alq$_3$or Bebq$_2$/cathode and the low work function metal alloy such as Li:Al was used as the electron injecting electrode(cathode). Device structure of glass substrate/ITO/TPD(30nm)/Tb(ACAC)$_3$(Phen)(30nm)/Eu(TTA)$_3$(Phen)(6nm)/DCM doped Alq$_3$(10nm)/Alq$_3$(20nm)/Li:Al(100nm) was also fabricated and their EL characteristics were investigated where Eu(TTA)$_3$(Phen) and DCM doped Alq$_3$were used as red light-emitting materials. It was found that the turn-on voltage of the device with non-doped Alq$_3$was lower than that of the devices with doped Alq$_3$and the blue and red light emission peaks due to TPD and Eu(TTA)$_3$(Phen) with non-doped Alq$_3$were lower than those with DCM doped Alq$_3$Details on the white-light-emitting characteristics of these device structures were explained by the energy and diagrams of various materials used in these structure where the energy levels of new materials such as ionization potential(IP) and electron affinity(EA) were measured by cyclic voltametric method.

  • PDF

Eu3+/Tb3+Co-Doped Cerium Oxide Transparent Nanocomposite for Color-Tunable Emission

  • Li, Xiaoyan;Yu, Yunlong;Guan, Xiangfeng;Luo, Peihui;Jiang, Linqin;Zheng, Zhiqiang;Chen, Dagui
    • Nano
    • /
    • v.13 no.10
    • /
    • pp.1850119.1-1850119.6
    • /
    • 2018
  • $Eu^{3+}/Tb^{3+}$ co-doped nanocomposite containing $CeO_2$ nanocrystals was successfully prepared by an in situ sol-gel polymerization approach. High-resolution transmission electron microscopy demonstrated the homogeneous precipitation of $CeO_2$ nanocrystals among the polymethylmethacrylate (PMMA) matrix. The thermal stability and UV-shielding capability of the obtained nanocomposite were improved with increase of $CeO_2$ content. The tuning of the emissive color from green and yellow to red can be easily achieved by varying the dopant species and concentration. These results suggested that the obtained nanocomposite could be potentially applicable in transparent solid-state luminescent devices.

Spectroscopic Studies of Rare-earth Elements in Silicate Glasses (실리카계 유리의 희토류 이온 분광특성 연구)

  • Yoon, Y.Y.;Kim, T.S.;Kil, D.S.;Hwang, Y.;Chung, H.S.
    • Korean Journal of Materials Research
    • /
    • v.8 no.3
    • /
    • pp.219-223
    • /
    • 1998
  • Spectroscopic properties of $Eu^{3+}$, $Sm^{3+}$, $Tb^{3+}$ ions in silicate glasses have been studied. The absorption and emission properties were investigated with the wavelength and rare-earth element concentration. The results showed that the emission spectrum of $Sm^{3+}$ was a transition from $^{5}D_{o}$ excited level to ^{7}F$ ground state and $Sm^{3+}$ was from $4F_{5/2}$ to $^{6}H$ and $Tb^{3+}$ was from $^{5}D_{4}$ to ^{7}F$ The emission intensity was linearly increased with rare-earth element concentrations up to 10wt%.

  • PDF