• Title/Summary/Keyword: $ErbB_3$

Search Result 66, Processing Time 0.024 seconds

Effects of n-3 Fatty Acids on Proliferation of Human Breast Cancer Cells in Relatino to Lipid Peroxidation and Oncogene Expression (n-3 지방산이 유방암세포의 증시과 지질과산화 및 Oncogene 발현에 미치는 영향)

  • 조성희
    • Journal of Nutrition and Health
    • /
    • v.30 no.8
    • /
    • pp.987-994
    • /
    • 1997
  • To investigate the effects of n-3 fatty acids on breast cancer, MDA-MB231 human breast cancer cells were cultured in the presence of $\alpha$-linolenic (LNA), eicosapentaenoic(EPA), and docosahexaenoic acid (DHA) at a concentration of 0.5$\mu\textrm{g}$/ml in serum -free IMM medium. Cell growth was monitored and thiobarbituric acid reactive substances (TBARS), $\alpha$-tocopherol contents, and oncogene expression were measured. To compare the effects of n-3 fatty acids with other types of fatty acid, steraic (STA), olieic(OA). linoleic acid(LA) were used. After one day , cell growth was retarded most highly when DHA was in the medium. Cellular TBARS level measured after three days of culture was the highest with DHA in the medium and was also increased by LNA and EPA, compared with STA, OA and LA. Alpha-tocoopherol contents of cells were decreased by DHA but only modestly. There was non significant difference in $\alpha$-tocopherol contents in cells cultured in the presence of the other fatty acids. northern blot hybridization carried out with cells cultured during 24 hours showed that levels of erbB-2 mRNA were not altered by six different fatty acids in the medium but those of c-myc were transiently decreased in the early period by both n-6 and n-3 polyunsaturated fatty acids. The level of tumor suppressor gen p53 mRNA , however, was increased by DHA with time. It is concluded that the cytotoxicity of lipid peroxide and increased expression of tumor suppressor gene p53 are at least partly responsible for the inhibitory effect of DHA on growth of breast cancer cells.

  • PDF

Reconstruction and Exploratory Analysis of mTORC1 Signaling Pathway and Its Applications to Various Diseases Using Network-Based Approach

  • Buddham, Richa;Chauhan, Sweety;Narad, Priyanka;Mathur, Puniti
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.3
    • /
    • pp.365-377
    • /
    • 2022
  • Mammalian target of rapamycin (mTOR) is a serine-threonine kinase member of the cellular phosphatidylinositol 3-kinase (PI3K) pathway, which is involved in multiple biological functions by transcriptional and translational control. mTOR is a downstream mediator in the PI3K/Akt signaling pathway and plays a critical role in cell survival. In cancer, this pathway can be activated by membrane receptors, including the HER (or ErbB) family of growth factor receptors, the insulin-like growth factor receptor, and the estrogen receptor. In the present work, we congregated an electronic network of mTORC1 built on an assembly of data using natural language processing, consisting of 470 edges (activations/interactions and/or inhibitions) and 206 nodes representing genes/proteins, using the Cytoscape 3.6.0 editor and its plugins for analysis. The experimental design included the extraction of gene expression data related to five distinct types of cancers, namely, pancreatic ductal adenocarcinoma, hepatic cirrhosis, cervical cancer, glioblastoma, and anaplastic thyroid cancer from Gene Expression Omnibus (NCBI GEO) followed by pre-processing and normalization of the data using R & Bioconductor. ExprEssence plugin was used for network condensation to identify differentially expressed genes across the gene expression samples. Gene Ontology (GO) analysis was performed to find out the over-represented GO terms in the network. In addition, pathway enrichment and functional module analysis of the protein-protein interaction (PPI) network were also conducted. Our results indicated NOTCH1, NOTCH3, FLCN, SOD1, SOD2, NF1, and TLR4 as upregulated proteins in different cancer types highlighting their role in cancer progression. The MCODE analysis identified gene clusters for each cancer type with MYC, PCNA, PARP1, IDH1, FGF10, PTEN, and CCND1 as hub genes with high connectivity. MYC for cervical cancer, IDH1 for hepatic cirrhosis, MGMT for glioblastoma and CCND1 for anaplastic thyroid cancer were identified as genes with prognostic importance using survival analysis.

Patterns of Metastasis and Survival in Breast Cancer Patients: A Preliminary Study in an iranian Population

  • Ziaei, Jamal Eivazi;Pourzand, Ali;Bayat, Amrollah;Vaez, Jalil
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.3
    • /
    • pp.937-940
    • /
    • 2012
  • Due to lack of sufficient data on characteristics of breast cancer patients and risk factors for developing metastasis in Iran this study was designed to understand clinical aspects impacting on survival. A cross-sectional study on breast cancer patients was conducted in an oncology clinic of the university hospital between 1995 and 2010. Data were retrieved from medical records and included age, menopausal status, tumor diameter, number of involved nodes, histopathological type, estrogen and progesterone receptor expression, c-erbB-2, primary and secondary metastasis sites, overall survival, disease free interval and type of chemotherapy protocol. The results were analyzed with SPSS 13 software. The mean age of the patients was 49.2 (27-89) years. The primary tumors were mainly ER positive (48%) and PR negative (49.3%). The status of lymph nodes dissected and examined in these patients was unknown in 19 patients (25.3%) while 18 patients (24%) had positive lymph nodes with no report on the number of involved nodes. All of the patients had received antracyclin based chemotherapy in an adjuvant or metastatic setting. Adjuvant hormonal therapy was administered to receptor positive patients. In average, overall survival after recurrence was 30 months (95%CI 24.605-35.325) for non-skeletal versus 42 months (95%CI 31.211-52.789) for skeletal metastasis (P= 0.002). The median survival was also greater for receptor positive patients; 39 months (95%CI 33.716-44.284) for PR+ versus 26 months (95%CI 19.210-32.790) for PR- (P=0.047) and 38 months (95%CI 32.908-43.092) for ER+ versus 27 months (95%CI 18.780-35.220) for ER- patients (P=0.016). No relation was found between site of first metastasis and hormone receptor, age, tumor diameter, DFI and menopausal status. Sites of metastasis were independent of age, size of the tumor, menopausal and hormone receptor status in this study. Overall survival provided significant relations with respect to receptor status and bone metastasis.

Monitoring the Change of Protein Expression in Human Colon Cancer Cell SNU-81 treated with the Water-Extract of Coptis japonica (황련 열수추출물을 처치한 인간 대장암 세포 SNU-81에서의 단백질 발현 변화)

  • Yoo, Tae-Mo;Kim, Byung-Soo;Yoo, Byong-Chul;Yoo, Hwa-Seung
    • Journal of Pharmacopuncture
    • /
    • v.12 no.1
    • /
    • pp.5-12
    • /
    • 2009
  • Background : Anticancer effects of herbal medicine have been reported in various types of cancer, but the systematic approaches to explain molecular mechanism(s) are not established yet. Objective : To find the anticancer-effect and mechanism(s) of Water Extract of Coptis japonica (WECJ) colon cancer cell (SNU-81). Methods : We first selected 11 herbals, and anti-cancer effects of water-extracts from those herbals have been tested in human colon cancer cell line, SNU-81. Among the tested herbals, the WECJ significantly reduced proliferation of SNU-81. To establish a basis of understanding for anti-cancer mechanism, whole proteins have been obtained from SNU-81 harvested at 48 and 96 hrs after the treatment of WECJ, protein expression has been profiled by 2DE-based proteomic approach. Results : Various changes of the protein expression have been monitored, and most frequent dysregulation was found in the molecular chaperons including heat shock protein 90-alpha (Hsp90-alpha), 14-3-3 protein epsilon, T-complex protein 1 subunit alpha, protein disulfide-isomerase A3, and calreticulin. Interestingly, proliferation-associated protein 2G4 has been up-regulated, and it suggests the possible effect of Coptis japonica on ErbB3-regulated signal transduction pathway and growth control of human colon cancer cells. Conclusion : Based upon the present findings, the further study will focus on monitoring various cancer survival factors after artificial regulation of the proteins identified, and it would be the basis for the understanding of the Coptis japonica anti-cancer effect(s) at the molecular level.

EGFR and HER2 Expression in Papillary Thyroid Carcinoma

  • Kim, Yong-Seon;Kim, Jeong-Soo;Kim, Yong-Seok
    • Journal of Endocrine Surgery
    • /
    • v.18 no.4
    • /
    • pp.228-235
    • /
    • 2018
  • Purpose: The epidermal growth factor receptor (EGFR) family plays a crucial role in the growth of malignant tumors. EGFR and human EGFR 2 (HER2) protein overexpression are associated with an unfavorable prognosis and are important therapeutic targets in breast cancer. The aim of this study was to evaluate the relationship between EGFR and HER2 expression and clinicopathological factors in papillary thyroid carcinoma (PTC) at a single institution. Methods: A total of 129 consecutive patients with PTC were enrolled in this study and underwent thyroid surgery between October 2013 and February 2015. EGFR and HER2 protein expression was evaluated in the 129 primary tumors by immunohistochemistry, and the results were compared with the clinicopathological features. Results: Of the 129 PTC tumors, 20 (15.5%) were HER2 positive, and 109 (84.5%) were HER2 negative. Moreover, EGFR positivity were observed in 111 (86%) tumors. The mean age of the patients was $46.3{\pm}11.9years$ (range, 20-74 years), and the mean tumor size was $1.08{\pm}0.75cm$ (range, 0.2-3.5 cm). Tumor size, extrathyroidal extension, histological subtype, and TNM stage were not significantly associated with EGFR or HER2 expression. Meanwhile, high Ki-67 labeling index was significantly associated with EGFR expression (P=0.002), HER2 expression was significantly associated with younger age (${\leq}45years$) and cervical lymph node metastasis. Conclusion: Based on our data, it is not clear whether EGFR and HER2 expression is associated with tumor aggressiveness in PTC.

Loquat (Eriobotrya japonica) leaf extract inhibits the growth of MDA-MB-231 tumors in nude mouse xenografts and invasion of MDA-MB-231 cells

  • You, Mi-Kyoung;Kim, Min-Sook;Jeong, Kyu-Shik;Kim, Eun;Kim, Yong-Jae;Kim, Hyeon-A
    • Nutrition Research and Practice
    • /
    • v.10 no.2
    • /
    • pp.139-147
    • /
    • 2016
  • BACKGROUND/OBJECFTIVES: The present study was conducted to examine the inhibitory effect of loquat leaves on MDA-MB-231 cell proliferation and invasion. MATERIALS/METHODS: Female athymic nude mice were given a subcutaneous (s.c.) inoculation of MDA-MB-231 cells and randomly grouped to receive a s.c. injection of either 500 mg/kg ethanol, water extract or vehicle five times a week. Tumor growth, mitotic rate and necrosis were examined. MDA-MB-231 cells were cultured with DMSO or with various concentrations of loquat water or ethanol extract. Proliferation, adhesion, migration, invasion and matrix metalloproteinase (MMP) activity were examined. RESULTS: Tumor growth of xenograft nude mouse was significantly reduced by loquat extracts. The results of mitotic examination revealed that loquat extracts reduced tumor cell division. Both ethanol and water extracts significantly inhibited MDA-MB-231 cell proliferation. The protein expression of ErbB3 was significantly down-regulated by loquat leaf extracts. Loquat leaf extracts increased apoptosis of MDA-MB-231 cells following 24 hour incubation and the ethanol extract was more potent in inducing apoptosis than the water extract. Furthermore, loquat extracts inhibited adhesion, migration and invasion of MDA-MB-231 cells. MMP activity was significantly inhibited by loquat extracts. CONCLUSION: Our results show that extracts of loquat inhibit the growth of tumor in MDA-MB-231 xenograft nude mice and the invasion of human breast cancer cells, indicating the inhibition of tumor cell proliferation and invasion.

Alternative drug therapies are superior to epidermal growth factor receptor -targeted chemotherapeutic drug responses in non-small cell lung cancer

  • Sikdar, Sourav;Khuda-Bukhsh, Anisur Rahman
    • CELLMED
    • /
    • v.3 no.2
    • /
    • pp.10.1-10.8
    • /
    • 2013
  • Cancer is one of the major dreaded diseases causing high mortality. Lung cancer is second in position of all cancer related deaths and mainly divided into two morphologic sub-types: small-cell lung cancer and non-small cell lung cancer (NSCLC). NSCLC is an aggressive neoplasm which hardly responds to any conventional chemotherapy. Epidermal growth factor receptor (EGFR) belongs to the ErbB family of receptor tyrosine kinase that is mainly over-expressed in NSCLC. EGFR is mainly involved in the pathogenesis and progression of different carcinoma. In vivo and in vitro studies suggest that EGFR and EGF like peptides are often over-expressed in human NSCLC and these proteins are able to induce cell transformation. The conventional therapies mostly inhibit the EGFR activity and expression level in human NSCLC with the use of some EGFR-inhibitors like HKI-272, EKB569, CL-387785 etc. and some synthetic chemotherapeutic drugs like erlotinib, gefitinib, plumbagin, docetaxel, cisplatin etc., alone or in combination of two or more drugs. These therapies selectively act by competitive inhibition of the binding of adenosine triphosphate to the tyrosine kinase domain of the EGFR, resulting in inhibition of the EGFR signaling pathway. But these chemotherapeutic drugs have some cytotoxic activities to the normal cells and have some adverse side-effects. Recent studies on some traditional alternative therapies including some herbal and plant extracts, active ingredients like curcumin, different homeopathic drugs, etc. can target EGFR-signalling in NSCLC with less toxic side-effects are being currently developed.

Reovirus and Tumor Oncolysis

  • Kim, Man-Bok;Chung, Young-Hwa;Johnston, Randal N.
    • Journal of Microbiology
    • /
    • v.45 no.3
    • /
    • pp.187-192
    • /
    • 2007
  • REOviruses (Respiratory Enteric Orphan viruses) are ubiquitous, non-enveloped viruses containing 10 segments of double-stranded RNA (dsRNA) as their genome. They are common isolates of the respiratory and gastrointestinal tract of humans but are not associated with severe disease and are therefore considered relatively benign. An intriguing characteristic of reovirus is its innate oncolytic potential, which is linked to the transformed state of the cell. When immortalized cells are transfected in vitro with activated oncogenes such as Ras, Sos, v-erbB, or c-myc, they became susceptible to reovirus infection and subsequent cellular lysis, indicating that oncogene signaling pathways are exploited by reovirus. This observation has led to the use of the virus in clinical trials as an anti-cancer agent against oncogenic tumors. In addition to the exploitation of oncogene signaling, reovirus may further utilize host immune responses to enhance its antitumor activity in vivo due to its innate interferon induction ability. Reovirus is, however, not entirely benign to immunocompromised animal models. Reovirus causes so-called "black feet syndrome" in immunodeficient mice and can also harm neonatal animals. Because cancer patients often undergo immunosuppression due to heavy chemo/radiation-treatments or advanced tumor progression, this pathogenic response may be a hurdle in virus-based anticancer therapies. However, a genetically attenuated reovirus variant derived from persistent reovirus infection of cells in vitro is able to exert potent anti-tumor activity with significantly reduced viral pathogenesis in immunocompromised animals. Importantly, in this instance the attenuated, reovirus maintains its oncolytic potential while significantly reducing viral pathogenesis in vivo.

Deoxypodophyllotoxin Inhibits Cell Growth and Induces Apoptosis by Blocking EGFR and MET in Gefitinib-Resistant Non-Small Cell Lung Cancer

  • Kim, Han Sol;Oh, Ha-Na;Kwak, Ah-Won;Kim, Eunae;Lee, Mee-Hyun;Seo, Ji-Hye;Cho, Seung-Sik;Yoon, Goo;Chae, Jung-Il;Shim, Jung-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.4
    • /
    • pp.559-569
    • /
    • 2021
  • As one of the major types of lung cancer, non-small cell lung cancer (NSCLC) accounts for the majority of cancer-related deaths worldwide. Treatments for NSCLC includes surgery, chemotherapy, and targeted therapy. Among the targeted therapies, resistance to inhibitors of the epidermal growth factor receptor (EGFR) is common and remains a problem to be solved. MET (hepatocyte growth factor receptor) amplification is one of the major causes of EGFR-tyrosine kinase inhibitor (TKI) resistance. Therefore, there exists a need to find new and more efficacious therapies. Deoxypodophyllotoxin (DPT) extracted from Anthriscus sylvestris roots exhibits various pharmacological activities including anti-inflammation and anti-cancer effects. In this study we sought to determine the anti-cancer effects of DPT on HCC827GR cells, which are resistant to gefitinib (EGFR-TKI) due to regulation of EGFR and MET and their related signaling pathways. To identify the direct binding of DPT to EGFR and MET, we performed pull-down, ATP-binding, and kinase assays. DPT exhibited competitive binding with ATP against the network kinases EGFR and MET and reduced their activities. Also, DPT suppressed the expression of p-EGFR and p-MET as well as their downstreat proteins p-ErbB3, p-AKT, and p-ERK. The treatment of HCC827GR cells with DPT induced high ROS generation that led to endoplasmic-reticulum stress. Accordingly, loss of mitochondrial membrane potential and apoptosis by multi-caspase activation were observed. In conclusion, these results demonstrate the apoptotic effects of DPT on HCC827GR cells and signify the potential of DPT to serve as an adjuvant anti-cancer drug by simultaneously inhibiting EGFR and MET.

PIK3CA Mutations and Neoadjuvant Therapy Outcome in Patients with Human Epidermal Growth Factor Receptor 2-Positive Breast Cancer: A Sequential Analysis

  • Seo, Youjeong;Park, Yeon Hee;Ahn, Jin Seok;Im, Young-Hyuck;Nam, Seok Jin;Cho, Soo Youn;Cho, Eun Yoon
    • Journal of Breast Cancer
    • /
    • v.21 no.4
    • /
    • pp.382-390
    • /
    • 2018
  • Purpose: PIK3CA mutation is considered to be a possible cause for resistance to neoadjuvant chemotherapy (NAC) in human epidermal growth factor receptor 2 (HER2)-positive breast cancer. We investigated the association between PIK3CA mutations and the outcome of NAC in HER2-positive breast cancers. Methods: A total of 100 HER2-positive breast cancer patients who had undergone NAC and surgery between 2004 and 2016 were examined. Mutation status was sequentially assessed in pre-NAC, post-NAC, and recurrent specimens taken from these patients. Results: PIK3CA mutations were identified in the sequential specimens of 17 patients (17.0%). These 17 patients experienced shorter disease-free survival (DFS) than the rest of the patients (58.3 months vs. 119.3 months, p=0.020); however, there was no significant difference in pathologic complete response (pCR) and overall survival (OS) (pCR, 17.6% vs. 33.7%, p=0.191; OS, 84.5 months vs. 118.0 months, p=0.984). While there was no difference in pCR between the wild-type and mutant PIK3CA groups in pre-NAC specimens (25.0% vs. 31.8%, p=0.199), PIK3CA mutations correlated with lower pCR in postNAC specimens (0.0% vs. 24.3%, p<0.001). Multivariate analysis revealed significantly worse DFS in the mutant PIK3CA group than in the wild-type group (hazard ratio, 3.540; 95% confidence interval, 1.001-12.589; p=0.050). Moreover, the DFS curves of the change of PIK3CA mutation status in sequential specimens were significantly different (p=0.016). Conclusion: PIK3CA mutation in HER2-positive breast cancer was correlated with a lower pCR rate and shorter DFS. These results suggest that PIK3CA mutation is a prognostic marker for NAC in HER2-positive breast cancer, especially in post-NAC specimens.