• Title/Summary/Keyword: $D_2$ receptor antagonists

Search Result 64, Processing Time 0.024 seconds

3D QSAR Study of 2-Methoxyphenylpiperazinylakanamides as 5-Hydroxytryptamine (Serotonin) Receptor 7 Antagonists

  • Nagarajan, Santhosh Kumar;Madhavan, Thirumurthy
    • Journal of Integrative Natural Science
    • /
    • v.9 no.2
    • /
    • pp.128-135
    • /
    • 2016
  • 5-hydroxytryptamine (serotonin) receptor ($5-HT_7R$) 7 is one of G-Protein coupled receptors, which is activated by the neurotransmitter Serotonin. After activation by serotonin, $5-HT_7$ activates the production of the intracellular signaling molecule cyclic AMP. $5-HT_7$ receptor has been found to be involved in the pathophysiology of various disorders. It is reported that $5-HT_7$ receptor antagonists can be used as antidepressant agents. In this study, we report the important structural and chemical parameters for 2-methoxyphenylpiperazinylakanamides as $5-HT_7R$ inhibitors. A 3D QSAR study based on comparative molecular field analysis (CoMFA) was performed. The best predictions were obtained for the best CoMFA model with $q^2$ of 0.594 with 6 components, $r^2$ of 0.986, Fisher value as 60.607, and an estimated standard error of 0.043. The predictive ability of the test set was 0.602. Results obtained the CoMFA models suggest that the data are well fitted and have high predictive ability. The contour maps are generated and studied. The contour analyses may serve as tool in the future for designing of novel and more potent $5-HT_7R$ derivatives.

Irradiation in Central Nervous System and Recovery Effect: Action of Antioxidants and NMDA-receptor Antagonists (중추신경의 방사선 조사와 회복효과: 항산화제와 NMDA-receptor 길항제의 작용)

  • Mun, Yeun-Ja;Park, Seung-Taeck;Choi, Min-Kyu;Jeong, Dong-Hyeok;Moon, Sun-Rock;Chung, Yeun-Tai
    • Applied Microscopy
    • /
    • v.28 no.4
    • /
    • pp.591-601
    • /
    • 1998
  • The neurotoxic effects of radiation have been studied in NSC-34 hybrid cells derived from embryonic mouse spinal cord cells. NSC-34 cells irradiated at 25Gy were decreased the cell viability in a time and dose dependent manner. The decrease in cell viability induced by the irradiation was blocked by catalase. Antagonists of the N-methyl-D-aspartate (NMDA) receptor, including D-2-amino-5-phosphonovaleric acid (APV) and chlorokynurenic acid (CKA), similarly blocked radiational induced in cell viability. We performed morphological analysis of light and electron microscope. NSC-34 cells irradiated at 25Gy were decreased the cell density and increased lysosomes and vacuoles in the cytoplasm. Especially chromatin modification was observed. These results indicated that radiation was involved in the oxidant-initiated neurotoxicity and the compounds catalase, APV and CKA were shown to be neuroprotective against radiation.

  • PDF

3D Structure Prediction of Thromboxane A2 Receptor by Homology Modeling

  • Nagarajan, Santhosh Kumar;Madhavan, Thirumurthy
    • Journal of Integrative Natural Science
    • /
    • v.8 no.1
    • /
    • pp.75-79
    • /
    • 2015
  • Thromboxane A2 receptors (TXA2-R) are the G protein coupled receptors localized on cell membranes and intracellular structures and play pathophysiological role in various thrombosis/hemostasis, modulation of the immune response, acute myocardial infarction, inflammatory lung disease, hypertension and nephrotic disease. TXA2 receptor antagonists have been evaluated as potential therapeutic agents for asthma, thrombosis and hypertension. The role of TXA2 in wide spectrum of diseases makes this as an important drug target. Hence in the present study, homology modeling of TXA2 receptor was performed using the crystal structure of squid rhodopsin and night blindness causing G90D rhodopsin. 20 models were generated using single and multiple templates based approaches and the best model was selected based on the validation result. We found that multiple template based approach have given better accuracy. The generated structures can be used in future for further binding site and docking analysis.

Pharmacophore Based Comparative Molecular Field Analysis of CRTh2 Antagonists

  • Babu, Sathya;Madhavan, Thirumurthy
    • Journal of Integrative Natural Science
    • /
    • v.8 no.2
    • /
    • pp.89-98
    • /
    • 2015
  • Chemoattractant receptor homologous molecule expressed on Th2 cells (CRTh2) is a G-protein coupled receptor targeted for inflammatory diseases such as asthma, allergic rhinitis and atopic dermatitis. In this study, pharmacophore modeling and comparative molecular field analysis (CoMFA) were performed on the series of 2-(2-(benzylthio)-1H-benzo[d]imidazol-1-yl) acetic acids derivatives. Five highly active compounds were used for generation of pharmacophore models using GASP module. The best pharmacophore model was selected and used as template for the alignment of compounds which was used for CoMFA analysis. The best predictions obtained for CoMFA was $q^2=0.545$, $r^2=0.756$. The predictive ability of the model was investigated using 15 test set compounds. Contour maps suggested that presence of bulky substituents at $5^{th}$ position of benzene ring connected to suphur atoms attached to imidazol ring will increase the activity of the compounds. The results obtained from this study will be useful to design more potent CRTh2 antagonists.

Pharmacophore-Based Comparative Molecular Similarity Indices Analysis of CRTh2 Antagonists

  • Babu, Sathya
    • Journal of Integrative Natural Science
    • /
    • v.8 no.4
    • /
    • pp.273-284
    • /
    • 2015
  • Chemoattractant Receptor Homologous molecule expressed on Th2 cells (CRTh2) is a chemoattractant receptor with seven transmembrane helices targeted for inflammatory diseases such as asthma and allergic rhinitis. In this study, pharmacophore based Comparative Molecular Similarity Indices Analysis (CoMSIA) were performed on the series of 2-(2-(benzylthio)-1H-benzo[d]imidazol-1-yl) acetic acids derivatives. Initially, GASP module was used for generation of pharmacophore models using five highly active compounds from the dataset. Among the generated pharmacophores, the best pharmacophore model was selected based on fitness score and was used as template for the alignment of compounds which was used for CoMSIA analysis. The best predictions were obtained utilizing steric, hydrophobic and H-bond acceptor parameters showing a $q^2$=0.559 and $r^2$=0.730. 15 test set compounds was used to investigate the predictive ability of the CoMSIA model. Contour maps suggested that presence of bulky substituents and H-bond acceptor atoms at $5^{th}$ position of benzene ring will increase the activity of the compounds. The results obtained from this study will be useful to design more potent CRTh2 antagonists.

Effects of Potential Melanocortin-1 Receptor Antagonists on Cultured Normal Human Melanocytes (Melanocortin-1 수용체 길항제의 배양된 인간 멜라노사이트에 대한 효과)

  • Lee, Sanghwa;Chang, Yun-Hee;Lee, Seol-Hoon;Lee, Jeung Hoon
    • YAKHAK HOEJI
    • /
    • v.58 no.1
    • /
    • pp.21-27
    • /
    • 2014
  • We have developed 8 peptide derivatives as potential MC1R antagonists and their inhibitory effects on ${\alpha}$-MSH induced cell growth in cultured normal human melanocytes (NHM) were investigated. From these experiments, the two most potent peptide derivatives, 5-phenylvaleric acid-(D)His-Arg-Trp-$(Lys)_6NH_2$ (P 6) and 5-phenylvaleric acid-(D)His-Arg-Trp-$(Lys)_9NH_2$ (P 7) were selected for further studies. In ${\alpha}$-MSH depleted NHM cells, we have found that the treatment with 1 ${\mu}M$ of these two peptide derivatives, P 6 and P 7, inhibited the cell proliferation induced by the addition of 1 nM ${\alpha}$- MSH by 70% and 72%, respectively. In NHM cells without previous ${\alpha}$-MSH depletion, 1 ${\mu}M$ treatment in the presence of 10 nM ${\alpha}$-MSH resulted in 70% (P 6) and 80% (P 7) decrease in cell growth and 64% (P 6) and 71% (P 7) reduction in melanin synthesis, respectively. The peptide derivatives P 6 and P 7 were proved to have no apparent cytotoxicity and inhibited the elevation of intracellular cAMP concentration triggered by ${\alpha}$-MSH. In conclusion, our data suggest that the peptide derivatives reported in this study, 5-phenylvaleric acid-(D)His-Arg-Trp-$(Lys)_6NH_2$ (P 6) and 5-phenylvaleric acid-(D)His- Arg-Trp-$(Lys)_9NH_2$ (P 7) strongly antagonize ${\alpha}$-MSH, inhibit cell proliferation and melanin synthesis, and lower the intracellular cAMP concentration, hence have a promising potential as a novel skin lightening agent.

An in Vivo Study of Dopamine Metabolism in Hyperglycemic Rat Striatum

  • Lim, Dong-Koo;Lee, Kyung-Min
    • Archives of Pharmacal Research
    • /
    • v.18 no.4
    • /
    • pp.249-255
    • /
    • 1995
  • The changes in the levels of the extracellular dopamine metabolites and the responses to various dopamine agents were studied by using microdialysis inhyperglycemic rat striatum. The hyperglycemia were induced by the administriation of streptozotocin (40 mg/kg, i.p. for 3 days.). The basal levels of striatal dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) were significantly decreased in hyperglycemic rat striatum. After the administration ofl D-1 and D-2 receptor antagonists, SCH-23390 and (-)sulpiride, to rats 14 days after the last administration of STZ, the increased rates in DOPAC levels were higher in hyper- than in normoglycemic rats. However, after the administration of dopamine autoeceptor agonist, 3(-)PPP, the levels of the extracellular HVA were increased in normoglycemic rats, but those were not altered in hyperglycemic rats. The results indicate that the striatal dopamine activities were decreased in the hyperglycemic rats and suggest that release of dopamine may be decreased in hyperglycemic rats. Furthermore it suggest that the increase in the levels of the extracellular dopamine metabolites by dopamine antagonists might be dur to the incrrased sensitivities of the dopamine receptors in hyperglycemic state.

  • PDF

Dopamine Modulates Corticostriatal Synaptic Transmission through Both $D_1$ and $D_2$ Receptor Subtypes in Rat Brain

  • Lee, Hyun-Ho;Choi, Se-Joon;Kim, Ki-Jung;Cho, Hyeong-Seok;Kim, Seong-Yun;Sung, Ki-Wug
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.5
    • /
    • pp.263-268
    • /
    • 2005
  • Striatum has important roles in motor control, habitual learning and memory. It receives glutamatergic inputs from neocortex and thalamus, and dopaminergic inputs from substantia nigra. We examined effects of dopamine (DA) on the corticostriatal synaptic transmission using in vitro extracellular recording technique in rat brain corticostriatal slices. Synaptic responses were elicited by stimulation of cortical glutamatergic inputs on the corpus callosum and recorded in the dorsal striatum. Corticostriatal population spike (PS) amplitudes were decreased ($39.4{\pm}7.9$%) by the application of $100{\mu}M$ DA. We applied receptor subtype specific agonists and antagonists and characterized the modulation of corticostriatal synaptic transmission by different DA receptor subtypes. $D_2$ receptor agonist (quinpirole), antagonist (sulpiride), and $D_1$ receptor antagonist (SKF 83566), but not $D_1$ receptor agonist (SKF 38393), induced significantly the reduction of striatal PS. Pretreatment neither with SKF 83566 nor sulpiride significantly affected corticostriatal synaptic inhibition by DA. However, the inhibition of DA was completely blocked by pretreatment with mixed solution of both SKF 83566 and sulpiride. These results suggest that DA inhibits corticostriatal synaptic transmission through both $D_1$ and $D_2$ receptors in concert with each other.

Effects of the dopaminergic system on release of TSH and thyroid hormone in rats (랫드에서 TSH와 갑상선 호르몬에 미치는 dopamine계의 영향)

  • Lee, Sang-woo;Kim, Jin-sang;Han, Jeong-hee
    • Korean Journal of Veterinary Research
    • /
    • v.32 no.2
    • /
    • pp.165-173
    • /
    • 1992
  • The present study was carried out to investigate the effects of dopaminergic drugs and the role of specific dopamine(DA) receptors on the release of TSH, $T_4$ and $T_3$. Serum TSH levels (cold-induced, $4{^{\circ}C}$) were determined using RIA(radioimmunoassay) at 30 min after administration of dopamine agonists and antagonists. Serum $T_4$ and $T_3$ levels were detected after these dopaminergic drugs were administered subcutaneously twice a day for a week. The results of the study are summarized as follows : Apomorphine, a nonspecific DA receptor agonist, produced a dose-depedent decrease in serum TSH, $T_4$ and $T_3$ levels. However, only low doses (0.3, 1.0mg/kg) of SKF38393, a specific $D_1$-receptor agonist, produced a decrease in serum lelvels of TSH. I,Y171555, a specific $D_2$-receptor agonist, produced a dose dependent decrease in serum TSH, $T_4$ and $T_3$ levels. However, SCH23390, a specific $D_1$-receptor antagonist, produced a decrease except in serum T levels which were increased dose dependently. High doses (1.0, 3.0mg/kg) of sulpiride, a specific $D_2$-receptor antagonist, made a increase in the serum levels of TSH and $T_3$. The effects of dopaminergic drugs in serum TSH and $T_4$ levels was potentiated by the pretreatment of apomorphine. The overall results of this study suggest that the regulation of TSH, $T_4$ and $T_3$ secretion were mediated via specific $D_1$ and $D_2$ receptor.

  • PDF

Effects of dopaminergic receptor stimulation on Mg2+ regulation in the rat heart and isolated ventricular myocytes (흰쥐의 심장과 심근세포에서 dopaminergic 수용체 자극이 Mg2+ 조절에 미치는 영향)

  • Kang, Hyung-sub;Kim, Jong-shick;Kim, Jin-shang
    • Korean Journal of Veterinary Research
    • /
    • v.39 no.3
    • /
    • pp.463-471
    • /
    • 1999
  • Magnesium($Mg^{2+}$) is one of the most abundant intracellular divalent cation. Although recent studies demonstrate that adrenergic receptor stimulation evokes marked changes in $Mg^{2+}$ homeostasis, the regulation of $Mg^{2+}$ by dopaminergic receptor stimulation is not yet known. In this work, we used dopaminergic agents to identify which type(s) of receptors were involved in the mobilization of $Mg^{2+}$ by dopaminergic receptor stimulation in the perfused rat hearts, isolated myocytes and circulating blood. The $Mg^{2+}$ content was measured by atomic absorbance spectrophotometry. Dopamine(DA), apomorphine(APO) and pergolide stimulated $Mg^{2+}$ efflux in the perfused rat hearts and these effects were inhibited by haloperidol or fluphenazine, nonselective dopaminergic antagonists. SKF38393, a selective doparminergic agonist, increased $Mg^{2+}$ efflux from the perfused hearts in dose dependant manners and SKF38393-induced $Mg^{2+}$ efflux was blocked by haloperidol. However, dopaminergic agonists-induced $Mg^{2+}$ efflux was potentiated in the presence of sulpiride or eticlopride, $D_2$-selective antagonist, from the perfused hearts. This increase of $Mg^{2+}$ efflux was blocked by haloperidol or imipramine. DA or pergolide increased in circulating $Mg^{2+}$ from blood. By contrast, PPHT stimulated $Mg^{2+}$ influx(a decrease in efflux) from the perfused hearts and circulating blood. PPHT-induced $Mg^{2+}$ influx was blocked by fluphenazine in the perfused hearts. DA-stimulated $Mg^{2+}$ efflux was inhibited by dopaminergic antagoinst in the isolated myocytes. In conclusion, the flux of $Mg^{2+}$ is modulated by DA receptor activation in the rat hearts. The efflux of $Mg^{2+}$ can be increased by $D_1$-receptor stimulation and decreased by $D_2$-receptor stimulation, respectively.

  • PDF