DOI QR코드

DOI QR Code

3D Structure Prediction of Thromboxane A2 Receptor by Homology Modeling

  • Received : 2015.01.04
  • Accepted : 2015.03.25
  • Published : 2015.03.30

Abstract

Thromboxane A2 receptors (TXA2-R) are the G protein coupled receptors localized on cell membranes and intracellular structures and play pathophysiological role in various thrombosis/hemostasis, modulation of the immune response, acute myocardial infarction, inflammatory lung disease, hypertension and nephrotic disease. TXA2 receptor antagonists have been evaluated as potential therapeutic agents for asthma, thrombosis and hypertension. The role of TXA2 in wide spectrum of diseases makes this as an important drug target. Hence in the present study, homology modeling of TXA2 receptor was performed using the crystal structure of squid rhodopsin and night blindness causing G90D rhodopsin. 20 models were generated using single and multiple templates based approaches and the best model was selected based on the validation result. We found that multiple template based approach have given better accuracy. The generated structures can be used in future for further binding site and docking analysis.

Keywords

References

  1. A. Shenker, P. Goldsmith, C. G. Unson, and A. M. Spiegel, "The G protein coupled to the thromboxane A2 receptor in human platelets is a member of the novel Gq family", J. Biol. Chem., Vol. 266, pp. 9309-9313, 1991.
  2. R.-F. Shen and H.-H. Tai, "Thromboxanes: synthase and receptors", J. Biomed. Sci., Vol. 5, pp. 153-172, 1998. https://doi.org/10.1007/BF02253465
  3. T. Abe, K. Takeuchi, N. Takahashi, E. Tsutsumi, Y. Taniyama, and K. Abe, "Rat kidney thromboxane receptor: molecular cloning, signal transduction, and intrarenal expression localization", J. Clin. Invest., Vol. 96, pp. 657-664, 1995. https://doi.org/10.1172/JCI118108
  4. G. C. Baker, J. J. Smith, and D. A. Cowan "Review and re-analysis of domain-specific 16S primers", J. Microbiol. Meth., Vol. 55, pp. 541-555, 2003. https://doi.org/10.1016/j.mimet.2003.08.009
  5. J. C. Mobarec, R. Sanchez, and M. Filizola, "Modern homology modeling of G-protein coupled receptors: which structural template to use?", J. Med. Chem., Vol. 52, pp. 5207-5216, 2009. https://doi.org/10.1021/jm9005252
  6. S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, "Basic local alignment search tool", J. Mol. Biol., Vol. 215, pp. 403-410, 1990. https://doi.org/10.1016/S0022-2836(05)80360-2
  7. H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, and P. E. Bourne, "The protein data bank", Nucleic Acids Res., Vol. 28, pp. 235-242, 2000. https://doi.org/10.1093/nar/28.1.235
  8. J. D. Thompson, D. G. Higgins, and T. J. Gibson, "CLUSTAL W: improving the sensitivity of progressive sequence weighting, position-specific gap penalties and weight matrix choice", Nucleic Acids Res., Vol. 22, pp. 4673-4680, 1994. https://doi.org/10.1093/nar/22.22.4673
  9. B. K. Kuntal, P. Aparoy, and P. Reddanna, "EasyModeller: A graphical interface to MODELLER", BMC Research Notes, Vol. 3, pp. 226, 2010. https://doi.org/10.1186/1756-0500-3-226
  10. N. Eswar, M. A. Marti-Renom, B. Webb, M. S. Madhusudhan, D. Eramian, M. Shen, U. Pieper, and A. Sali, "Comparative protein structure modeling with MODELLER", Current Protocols in Bioinformatics, Vol. 5, pp. 1-5, 2006.
  11. S. C. Lovell, I. W. Davis, W. B. Arendall III, P. I. W. Bakker, J. M. Word, M. G. Prisant, J. S. Richardson, and D. C. Richardson, "Structure validation by $C{\alpha}$ geometry: ${\phi}$, ${\psi}$ and $C{\beta}$ deviation", Proteins., Vol. 50, pp. 437-450, 2003. https://doi.org/10.1002/prot.10286
  12. C. Colovos and T. O. Yeates, "Verification of protein structures: patterns of nonbonded atomic interactions", Protein Sci., Vol. 2, pp. 1511-1519, 1993. https://doi.org/10.1002/pro.5560020916

Cited by

  1. Theoretical Structure Prediction of Bradykinin Receptor B2 Using Comparative Modeling vol.9, pp.4, 2016, https://doi.org/10.13160/ricns.2016.9.4.234
  2. Structure Prediction of KiSS1-derived Peptide Receptor Using Comparative Modelling vol.9, pp.2, 2016, https://doi.org/10.13160/ricns.2016.9.2.136
  3. Protein Phosphatase 1D (PPM1D) Structure Prediction Using Homology Modeling vol.9, pp.1, 2016, https://doi.org/10.13160/ricns.2016.9.1.35
  4. Three Dimensional Structure Prediction of Neuromedin U Receptor 1 Using Homology Modelling vol.10, pp.1, 2015, https://doi.org/10.13160/ricns.2017.10.1.7
  5. Theoretical Protein Structure Prediction of Glucagon-like Peptide 2 Receptor Using Homology Modelling vol.10, pp.3, 2015, https://doi.org/10.13160/ricns.2017.10.3.119