• Title/Summary/Keyword: $CuOH^+$

Search Result 1,037, Processing Time 0.029 seconds

Occurrence and Chemical Composition of Dolomite and Chlorite from Xiquegou Pb-Zn Deposit, China (중국 Xiquegou 연-아연 광상의 돌로마이트와 녹니석 산상과 화학조성)

  • Yoo, Bong Chul
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.2
    • /
    • pp.125-140
    • /
    • 2022
  • The Xiquegou Pb-Zn deposit is located at the Qingchengzi orefield which is one of the largest Pb-Zn mineralized zone in the northeast of China. The geology of this deposit consists of Archean granulite, Paleoproterozoinc migmatitic granite, Paleo-Mesoproterozoic sodic granite, Paleoproterozoic Liaohe group, Mesozoic diorite and Mesozoic monzoritic granite. The Xiquegou deposit which is a Triassic magma-hydrothermal type deposit occurs as vein ore filled fractures along fault zone in unit 3 (dolomitic marble and schist) of Dashiqiao formation of the Paleoproterozoic Liaohe group. Xiquegou Pb-Zn deposit consists of quartz, apatite, calcite, pyrite, arsenopyrite, pyrrhotite, marcasite, sphalerite, chalcopyrite, stannite, galena, tetrahedrite, electrum, argentite, native silver and pyrargyrite. Wallrock alteration of this deposit contains silicification, pyritization, dolomitization, chloritization and sericitization. Based on mineral petrography and paragenesis, dolomites from this deposit are classified two type (1. dolomite (D0) as wallrock, 2. dolomite (D1) as wallrock alteration in Pb-Zn mineralization quartz vein ore). The structural formulars of dolomites are determined to be Ca1.03-1.01Mg0.95-0.83Fe0.12-0.02Mn0.02-0.00(CO3)2(D0) and Ca1.16-1.00Mg0.79-0.44Fe0.53-0.13Mn0.03-0.00As0.01-0.00(CO3)2(D1), respectively. It means that dolomites from the Xiquegou deposit have higher content of trace elements compared to the theoretical composition of dolomite. The dolomite (D1) from quartz vein ore has higher content of these trace elements (FeO, PbO, Sb2O5 and As2O5) than dolomite (D0) from wallrock. Dolomites correspond to Ferroan dolomite (D0), and ankerite and Ferroan dolomite (D1), respectively. The structural formular of chlorite from quartz vein ore is (Mg1.65-1.08Fe2.94-2.50Mn0.01-0.00Zn0.01-0.00Ni0.01-0.00Cr0.02-0.00V0.01-0.00Hf0.01-0.00Pb0.01-0.00Cu0.01-0.00As0.03-0.00Ca0.02-0.01Al1.68-1.61)5.77-5.73(Si2.84-2.76Al1.24-1.16)4.00O10(OH)8. It indicated that chlorite of quartz vein ore is similar with theoretical chlorite and corresponds to Fe-rich chlorite. Compositional variations in chlorite from quartz vein ore are caused by mainly octahedral Fe2+ <-> Mg2+ (Mn2+) substitution and partly phengitic or Tschermark substitution (Al3+,VI+Al3+,IV <-> (Fe2+ 또는 Mg2+)VI+(Si4+)IV).

Electrochemical Characteristics of LiNi0.5Mn1.5O4 Spinel as 5 V Class Cathode Material for Lithium Secondary Batteries (5V급 고전압 양극 LiNi0.5Mn1.5O4 Spinel의 제조와 전기화학적 특성에 관한 연구)

  • Jeon, Sang-Hoon;Oh, Si-Hyoung;Lee, Byung-Jo;Cho, Won-Il;Cho, Byung-Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.4
    • /
    • pp.172-176
    • /
    • 2005
  • Recently, many researches on the high-voltage 5 V class cathode material have focused on $LiNi_{0.5}Mn_{1.5}O_4$, where $Mn^{3+}$ in the existing $LiMn_2O_4 (Li[Mn^{3+}][Mn^{4+}]O_4)$ is replaced by $Ni^{2+}(Li[Ni^{2+}]_{0.5}[Mn^{4+}]_{1.5}O_4)$ in order to utilize $Ni^{2+}/Ni^{4+}$ redox reaction in the 5V region. The partial substitution of Mn in $LiMn_2O_4$ for other transition metal element, $LiM_yMn_{1-y}O_4$(M=Cr, Al, Ni, Fe, Co, Cu, Ga etc) is known as a good solution to overcome the problems associated with $LiMn_2O_4$ like the gradual capacity fading. In this study, we synthesized $LiNi_{0.5}Mn_{1.5}O_4$ through a mechanochemical process and investigated its morphological, crystallographic and electrochemical characteristics. The results showed that 4 V peaks had been found in the cyclic volammograms of the synthesized powders due to the existence of $Mn^{3+}$ from the incomplete substitution of $Ni^{2+}$ for $Mn^{3+}$ implying that the mechanochemical activation alone was not good enough to synthesize an exact stoichiometric compound of $LiNi_{0.5}Mn_{1.5}O_4$. The synthetic condition of mechanochemical process, such as type of starting materials, ball-mill and calcination condition was optimized for the best electrochemical performance.

Ion Characteristics of the Ground Water in Hydroponic Farms of Paprika for Export (수출 파프리카 재배 농가의 지하수 이온 특성)

  • Choi, Ki-Young;Oh, Jeong-Sim;Lee, Cheol-Seung;Park, Sung-Tae;Gantumur, Narnggerel;Yoo, Hyung-Joo;Lee, Yong-Beom
    • Journal of Bio-Environment Control
    • /
    • v.19 no.2
    • /
    • pp.70-76
    • /
    • 2010
  • To investigate the ground water quality status for paprika hydroponics for export, its pH, EC (electrical conductivity) and inorganic ion concentrations were analyzed in Gangwan-do (27 samples), Gyeonsangnam-do (77 samples) and Jeollanam-do (54 samples) from November 2008 to September 2009. The average values of several components in ground water were as follows; 7.20 (6.57~7.54) in pH, 0.31 (0.05~0.49) $dS{\cdot}m^{-1}$ in EC, 97.81 (35.37~161.11) in $HCO_3$, 5.68 (0.45~15.48) in T-N, 0.67 (0.15~0.70) in P, 2.53 (0.59~6.70) in K, 35.68 (4.15~80.70) in Ca, 7.35 (1.46~14.87) in Mg, 17.89 (3.31~34.82) in Na, 0.01 (0~0.05) in Fe, 0.09 (0~0.51) in Mn, 0.06 (0~0.07) in Zn, and 0.03 (0~0.10) $mg{\cdot}L^{-1}$ in Cu, respectively. The values of pH, EC, $HCO_3$, Ca, Mg and Na in ground water were different depending on areas and farms. Frequency rates were 92.6% of pH 5.0~8.0, 89.3% of EC < 0.5 $dS{\cdot}m^{-1}$, 69.5% of $HCO_3$ < 100, 97.5% of Na < 30, 88.5% of Ca < 40, 97.5% of Mg < 20, 90.1% of Fe < 0.05, 99.6% of Mn < 0.6, and 98.3% of Zn < 0.5 $mg{\cdot}L^{-1}$, respectively, which can be used for nutrient fertilizers in hydroponics. The percentage of suitable water quality was 46.3% as 70 sites among the all analyzed ions. The pH value showed high significance of correlations with EC, Mg, $HCO_3$, Na, and Fe. Also the EC value showed high positive significance with T-N, K, Ca, Mg, $HCO_3$, Na and Mn.

The Evaluation of Trace Minerals Levels of Pasture Soils and Forages in Jeju (제주지역 목장 토양 및 조사료 자원의 미량광물질 함량 평가)

  • Lee, Chong-Eon;Park, Myung-Hee;Park, Nam-Keon;Park, Hyung-Soo;Oh, Woon-Yong
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.27 no.1
    • /
    • pp.29-36
    • /
    • 2007
  • A study was conducted to determine the trace minerals (Cu, Fe, Cd, Zn, Mo, Se, Mn, Cr, Co, Ni) levels in pasture soils and forages collected in Jeju area. Chemical characteristics and total or soluble trace minerals levels in 187 pasture soil samples (76 very dark brown and 111 black soils) were measured. Total trace minerals contents in hay samples of 60 Italian ryegrass, alfalfa and mixture grasses each were assessed. The pasture soils of Jeju were characterized to have low pH (5.1) and to contain low levels of available $P_2O_5$ (20.5 mg/kg) and exchangeable Ca, Mg, K, Na (2.6, 0.9, 0.5, 0.2 cmol+/kg, respectively) when comparing to upland soils of Jeju or Korean mainland. All trace elements in total or soluble analysis of pasture soils were detected, and there was a big difference between total and soluble levels. The pasture soils tended to have the higher total Fe, Mn, Ni and Zn contents. Cr in all forages was not detected, but other trace minerals levels showed normal range. The hay samples of Italian ryegrass and mixture grasses produced in Jeju tended to contain higher Mn (105 vs 23 mg/kg) and lower Mo (2.7 vs 4.9 mg/kg) than those of alfalfa hay imported from USA. Results show that trace minerals of pasture soils and forages in Jeju seem to be not deficient, indicating that supplementation of some trace minerals are not always necessary in diets for grazing animals and should be done after careful evaluation of diets with regard to concentrations and biological availability of essential elements.

Correlation of Nonpoint Pollutant and Particulate Matters at a Small Suburban Area (비시가화지역에서 비점오염물질과 입자성물질의 유출 상관성)

  • Park, Ji-Young;Bae, Sang-Ho;Yoon, Young-H.;Lim, Hyun-Man;Park, Jae-Roh;Oh, Hyun-Je;Kim, Weon-Jae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.11
    • /
    • pp.720-728
    • /
    • 2012
  • In general, nonpoint pollutant of a watershed is drained out in the form of storm water runoff during rainfall events. As the bulk of the nonpoint pollutant is in adsorbed form on particulate matters, in order to understand the behavior of nonpoint pollutant it is essential to grasp the characteristics of particulate matters in rainfall runoff. Though, previous studies for the relationship between the runoff characteristics of pollutants and the size distribution of particulate matters are very rare. In this study, a small non-urbanized area (basin area of 52.8 ha) with various landuse types including paddy, dry fields and forest was selected and investigated in detail for the runoff properties of each pollutant during several rainfall events. The correlation and effects between particulate matters and nonpoint pollutant were analyzed quantitatively. As a result, the significant first flush was observed on each event and it became clear that fine particulate matters ($80{\mu}m$ or less) has contributed in the runoff process of nutrients and heavy metals. Organic matters ($BOD_5$, TOC), nutrients (TN, TP) and several heavy metals (Al, Cr, Cu, Fe, Hg and Zn) represented high correlations with SS (total), VSS, SS (d < $20{\mu}m$) and SS ($20{\mu}m$ $$\leq_-$$ d < $80{\mu}m$). On the other hand, $COD_{cr}$, Cd, Mn and Pb did not show clear correlations with the behavior of particulate matters. Therefore, we have to examine the introduction of nonpoint pollution mitigation facilities considering the facts that nonpoint pollutant runoff process has high correlation with the behavior of particulate matters and is changeable based on the target pollutants.

Effects of Adenophora triphylla Ethylacetate Extract on mRNA Levels of Antioxidant Enzymes in Human HepG2 Cells (인간 HepG2 Cell에서 항산화 효소의 mRNA 발현에 대한 잔대 에틸아세테이트 추출물 효과)

  • Choi, Hyun-Jin;Kim, Soo-Hyun;Oh, Hyun-Taek;Chung, Mi-Ja;Cui, Cheng-Bi;Ham, Seung-Shi
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.10
    • /
    • pp.1238-1243
    • /
    • 2008
  • The root of Adenophora triphylla is widely used as traditional herbal medicine in Korea. We studied its effects on sodium nitroprusside (SNP) cytotoxicity and antioxidant genes expression in HepG2 cells. To study whether Adenophora triphylla ethylacetate extract (ATea) inhibited NO-induced cell death, HepG2 cells were preincubated for 24 hr with 50 and 100 $\mu$g/mL ATea followed by 24-hr exposure to 0.5 mM SNP (exogenous NO donor). No-induced cytotoxicity was inhibited by pretreatment of ATea, as assessed by mitochondrial dehydrogenase activity (MTT assay). We further investigated the effects of ATea on mRNA levels of various enzymes of the antioxidant system such as Cu, Zn superoxide dismutase (SOD 1), Mn SOD (SOD 2), glutathione peroxidase (GPx), catalase and several enzymes of the glutathione metabolism [glutathione reductase (GR), $\gamma$-glutamyl-cystein synthetase (GCS), glutathione-S-transferase (GST), $\gamma$-glutamyltranspeptidase ($\gamma$-GT), glucose-6-phosphate dehydrogenase (G6PD)] by RT-PCR. CAT, GCS, GR and G6PD mRNA levels were increased after treatment with ATea. The SOD 1, SOD 2, GPx, GST and $\gamma$-GT mRNA levels were not affected in ATea-treated HepG2 cells. We concluded that ATea have an indirect antioxidant effects, perhaps via induction of CAT, GCS, GR and G6PD.

A Study on the Concentration of Nanoparticles and Heavy Metals in Indoor/Outdoor Air in a University Administrative Public Office (대학교 행정실 실내 외 공기 중 나노입자와 중금속 농도에 관한 연구)

  • Choi, Su-Hyeon;Im, Ji-Young;Park, Hee-Jin;Chung, Eun-Kyung;Kim, Jong-Oh;Son, Bu-Soon
    • Journal of Environmental Health Sciences
    • /
    • v.38 no.6
    • /
    • pp.493-502
    • /
    • 2012
  • Objectives: The purpose of this study is to investigate the mass concentration of nanoparticles and understand the characteristics of elements of heavy metal concentrations within nanoparticles in the air using Micro-Orifice Uniform Deposit Impactor Model-110 (MOUDI-110), based on indoor and outdoor air. Methods: This Study sampled nanoparticles using MOUDI-110 indoors (office) and outdoors at S University in Asan, Korea in order to reveal the concentration of nanoparticles in the air. Sampling continued for nine months (10 times indoors and 14 times outdoors) from March to November 2010. Mass concentrations of nanoparticle and concentrations of heavy metals (Al, Mn, Zn, Ni, Cu, Cr, Pb) were analyzed. Results: Indoors, geometric mean concentration of nanoparticles ranged in size from 0.056 ${\mu}m$ to 0.10 ${\mu}m$ and those of 0.056 ${\mu}m$ or less recorded 0.929 ${\mu}g/m^3$ and 1.002 ${\mu}g/m^3$, respectively. On the other hand, the levels were lower outdoors with 0.819 ${\mu}g/m^3$ and 0.597 ${\mu}g/m^3$. Mann-Whitney U tests showed that the difference between the indoors and the outdoors was statistically meaningful in terms of particles of 0.056 ${\mu}m$ or less (p<0.05) in size. These results are possibly influenced by the use of printers and duplicators as the factor that increased the concentration of nanoparticles. In seasonal concentration distribution, the level was higher during the summer compared to in the autumn. Those of 0.056 ${\mu}m$ or less in size presented a statistically meaningful difference during the summer (p<0.05). These results may be influenced by photochemical event as the factor that makes the levels high. Regarding zinc, among the other heavy metals, the fine particles ranged in size from 0.056 ${\mu}m$ to 0.10 ${\mu}m$ and those of 0.056 ${\mu}m$ or less recorded 1.699 $ng/m^3$ and 1.189 $ng/m^3$ in the outdoors. In the indoors, the levels were lower, with 0.745 $ng/m^3$ and 0.617 $ng/m^3$. Cr and Ni at the size of 0.056 ${\mu}m$ or less, both of which have been known to pose severe health effects, recorded higher concentrations indoors with 0.736 $ng/m^3$ and 0.177 $ng/m^3$, compared to 0.444 $ng/m^3$ and 0.091 $ng/m^3$ outdoors. By season, Zn, Ni, Cu and Pb posted a high level of indoor concentration during the fall. As for Cr, the level of concentration indoors was higher than outdoors both during the summer and the autumn. Conclusion: This study indicates the result of an examination of nano-sized particles and heavy metal concentrations. It will provide useful data for the determination of basic nanoparticle standards in the future.

Mineralogy and the Behavior of Heavy Metals at Different Depths in Tailing Impoundment of the Samsanjeil mine (삼산제일광산 광미 매립지의 매립 심도에 따른 광물 변화 및 중금속의 거동)

  • Kim, Heong-Jung;Kim, Yeong-Kyoo;Choo, Chang-Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.229-240
    • /
    • 2009
  • In Gosung, the symptoms similar to itai-itai disease from neighboring residents of the Samsanjeil mine have been social issues. Therefore, various researches on the behavior of heavy metals of the tailings impoundment of 280,000 ton in the Samsanjeil mine are required. In this paper, mineralogical and geochemical studies on the tailings at different depths in the Samsanjeil mine were investigated and the factors on the behavior of heavy metals were also studied. At two sampling sites (NN and SN), samples were collected at different depths down to 1 m. At NN sites, pH values decreased with depth, while those at SN sites did not show significant changes. XRD analysis showed that the main minerals in the tailings were quartz, microcline, muscovite, and chlorite with minor amount of gypsum. There were no noticeable changes in the mineral composition with depth. At NN sites, the amount of calcite was negligible, and jarosite, which usually occurs at acid soil or acid mine drainage at pH lower than 4, was identified. However, the samples at SN site contained relatively high contents of calcite with pyrite. Therefore, calcite seemed to buffer the acid and control pH at SN site. The contents of heavy metals in tailings were in the order of Cu > As > Zn > Pb > Co > Cr > Ni > Cd. The heavy metal concentrations in the tailings were closely related with pH changes. The concentrations of Cd and Co were much lower at NN site at which pH values are low than those at SN sites. Contrary to that, Cr and As which exist as oxyanions showed higher concentrations at SN sites. This result showed that the behaviors of heavy metals in our study area were controlled by pH which is influenced by the contents of calcite.

Studies on the Selective Separation and Preconcentration of Cr(VI) Ion by XAD-16-Chromotropic Acid Chelating Resin (XAD-16-Chromotropic Acid 킬레이트 수지에 의한 몇 가지 금속이온의 선택적 분리 및 농축에 관한 연구)

  • Lee, Won;Lee, Chang-Youl;Kim, Mi-Kyoung;Kim, In-Whan
    • Analytical Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.199-210
    • /
    • 2004
  • A new polystyrene-divinylbenzene chelating resin containing 4,5-dihydroxy-naphthalene-2,7-disulfonic acid (chromotropic acid : CTA) as functional group has been synthesized and characterized. The sorption and desorption properties of this chelating resin for Cr(III) ion and Cr(VI) ion including nine metal bloodstain. As a results, FOB test kit could be effectively applied to identification of human blood at chelating resin was stable in acidic and alkaline solution. The Cr(VI) ion is selectively separated from Cr (III) ion at pH 2 and the maximum sorption capacity of Cr(VI) ion is 1.2 mmol/g. In the presence of anions such as $F^-$, $SO{_4}^{2-}$, $CN^-$, $CH_3COO^-$, $NO{_3}^-$, the sorption of Cr(VI) ion was reduced but anions such as $PO{_4}^{3-}$ and $Cl^-$ revealed no interference effect. The elution order of metal ions obtained from breakthrough capacity and overall capacity at pH 2 was Cr(VI)>Sn(II)>Fe(III)>Cu(II)>Cd(II)${\simeq}Pb(II){\simeq}Cr(III){\simeq}Mn(II){\simeq}Ni(II){\simeq}Al(III)$. Desorption characteristics for Cr(VI) ion was investigated with desorption agents such as $HNO_3$, HCl, and $H_2SO_4$. It was found that the ion showed high desorption efficiency with 3 M HCl. As the result, the chelating resin, XAD-16-CTA was successfully applied to separation and preconcentration of Cr (VI) ion from several metal ions in metal finishing works.

Impact of Rising Global Temperatures on Growth, Mineral Composition, and Photosynthesis in Radish in a Winter Cropping System (월동무의 생장, 무기성분 조성과 광합성에 미치는 온도 상승의 영향)

  • Oh, Soonja;Moon, Kyung Hwan;Song, Eun Young;Son, In-Chang;Wi, Seung Hwan;Koh, Seok Chan
    • Horticultural Science & Technology
    • /
    • v.35 no.1
    • /
    • pp.38-45
    • /
    • 2017
  • We investigated the effects of rising temperatures on the photosynthesis, mineral composition, and growth of radish (Raphanus sativus var. hortensis) in a winter cropping system using a temperature gradient tunnel to predict the impact of rising global temperatures. Vegetative growth, including shoot and root fresh and dry weights, shoot length, and root length and diameter, was high under elevated temperatures (ambient $+4^{\circ}C$ and $+7^{\circ}C$) compared with ambient temperature. At elevated temperatures, the N, P, Ca, Mg, and Fe contents were high in shoots, whereas in roots, the K, Ca, Mg, and Fe contents were high and the Cu content was low. The maximum photosynthetic rates ($22.1{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ at ambient temperature $+4^{\circ}C$ and $22.9{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ at ambient temperature $+7^{\circ}C$) at elevated temperatures were more than twice that ($9.7{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) at ambient temperature, whereas the water use efficiency was lower at elevated temperatures. These results suggest that rising global temperatures will lead to increased mineral absorption and photosynthesis in radish in winter cropping systems, subsequently favoring plant growth, although the water requirements will be high.