• Title/Summary/Keyword: $Cr^{3+}$

Search Result 4,931, Processing Time 0.027 seconds

HVOF 용사된 $\textrm{Cr}_{3}\textrm{C}_{2}$-NiCr 용사층의 특성 (Characteristics of the HVOF_sprayed $\textrm{Cr}_{3}\textrm{C}_{2}$-NiCr Coationg Layer)

  • 김병희;서동수
    • 한국재료학회지
    • /
    • 제8권9호
    • /
    • pp.849-855
    • /
    • 1998
  • 20wt%NiCr이 크래드된 크롬카바이드 분말과 7wt%NiCr이 기계적으로 혼합된 크롬카바이드 분말을 이용하여 HVOF 용사된 용사층의 특성(미세조직, 결정상, 경도값 그리고 erosion rate)을 비교하였다. 용사상태의 미세조직강의 특성은 크래드분말의 경우에 primary $\textrm{Cr}_{3}\textrm{C}_{2}$상이 용사층에는 남아 있었으나 혼합분말의 경우에는 primary $\textrm{Cr}_{3}\textrm{C}_{2}$ 상은 용사층에 거의존재하지 않았다. 또한 XRD 분석결과 두 분말 모두 용사과정에서 크롬카바이드의 분해는 일어났으나 분해율은 크래드분말의 경우가 혼합분말보다 낮았다. 용사상태에서 경도값은 혼합분말의 경우가 높았으며 $1000^{\circ}C$까지 열처리 후 혼합분말의 경도값은 1665까지 증가하였으나 크래드분말은 $600^{\circ}C$를 정점으로 감소하는 경향을 보였다.

  • PDF

HVOF 용사된 $\textrm{Cr}_{3}\textrm{C}_{2}$-NiCr 용사층의 산화 거동 (Oxidation Behavior of the HVOF-sprayed $\textrm{Cr}_{3}\textrm{C}_{2}$-NiCr Coating Layer)

  • 김병희;서동수
    • 한국재료학회지
    • /
    • 제8권8호
    • /
    • pp.757-765
    • /
    • 1998
  • 수소를 연료로 하여 HVOF 용사된 크롬카바이드 용사층의 산화거동을 이해하기 위해 용사분말의 제조방법이 서로 다른 두 종류의 용사용 분말을 ($\textrm{Cr}_{3}\textrm{C}_{2}$-20wt%NiCr로 구성된 크래드 분말과 $\textrm{Cr}_{3}\textrm{C}_{2}$-7wt%NiCr로 구성된 혼합분말)이용하여 F/O비를 3.2, 3.0, 2.8 로 변화시켜 용사한 후, $1000^{\circ}C$ 까지 등온 산화실험 후, 산화특성을 고찰하여 크롬카바이드 용사층의 F/O비에 의존하는 산화거동을 비교 검토하였다. 그 결과 NiCr이 20wt% 크래드된 분말로 용사된 용사층과 NiCr이 7wt% 혼합된 분말로 용사된 용사층은 전혀 다른 산화거동을 보였다. 혼합분말의 경우에 $1000^{\circ}C$에서 50시간 등온산화실험 후, F/O=3.2의 조건인 경우에는 산화물이 표면 요철을 따라 비교적 균일하게 성장한 반면 F/O=3.0과 F/O=2.8의 경우에는 용사층 표면이 다공성의 산화물이 형성되었으며, 또한 Ni, Cr으로 이루어진 복합산화물인 oxide cluster로 성장하였다. 반면에 크래드 분말로 용사된 용사층의표면 산화물 층은 다공성을 변화되지 않았다. 이러한 용사분말의 제조방법에 따라 산화거동이 차이를 보이는 것은 용사 중에 발생하는 카바이드분해와 밀접한 관계가 있는 것으로 생각되며 또한 일반적으로 알려진 크롬카바이드 소결체 보다 산화율이 높았다. 이러한 결과로 볼 때, 환원성의 수소의 양에 따른 용사층의산화거동에 대해서도 연구가 필요할 것으로 생각된다.

  • PDF

직접결합 마그네시아-크로미아질 내화벽돌의 특성에 미치는 $Cr_2O_3$ 함유량의 영향 (Effects of $Cr_2O_3$ Content on the Properties of Direct-Bonded Magnesia-Chromia Bricks)

  • 홍기곤;엄창중
    • 한국세라믹학회지
    • /
    • 제34권1호
    • /
    • pp.63-69
    • /
    • 1997
  • 출발원료로서 소결마그네시아 클링커 및 천연크롬철광을 사용하여 Cr2O3의 함유량을 약 10-30 중량%의 범위에서 변화시켜 직접결합 마그네시아-크로미아질 내화벽돌의 특성에 미치는 Cr2O3의 영향을 고찰하였다. 상온 꺾임강도 및 고온 꺽임강도는 Cr2O3의 함유량 및 flux 성분의 함유량과는 상관관계가 성립하지 않았으며, 상온 꺾임강도 및 고온 꺾임강도가 가장 우수한 Cr2O3 함유량의 범위는 20중량% 전후였다. 내식성을 좌우하는 주된 요인은 flux성분의 함유량보다는 2차 spinel의 생성량이었으며, 내식성은 2차 spinel의 생성량 증가에 따라 선형적으로 증가하였다. 또한, 내spalling성은 주로 flux 성분의 함유량에 의존하였으며, flux 함유량이 적을수록 내spalling성이 우수하였다.

  • PDF

고체 산화물 연료전지 금속 연결재용 $LaCrO_3$가 분산된 Cr 합금의 특성 연구 (Characteristics of $LaCrO_3$-Dispersed Cr Alloy for Metallic Interconnector of Solid Oxide Fuel Cell)

  • 전광선;송락현;신동렬
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제48권8호
    • /
    • pp.570-576
    • /
    • 1999
  • $LaCrO_3$-dispersed Cr alloys for metallic interconnector of solid oxide fuel cell have been studied as function of $LaCrO_3$ content in the range of 5 to 25 vol.% in order to examine the electric conductivity, the oxidation property and the thermal expansion behavior of these alloys. The $LaCrO_3$-dispersed Cr alloys showed high electrical conductivities of $3~5\times10^4$ S/cm at room temperature, and as the $LaCrO_3$content increased the conductivity decreased slightly. During the cyclic oxidation test at $1100^{\circ}C$, the weight change of the Cr alloys decreased with increasing number of oxidation cycle except first cycle, which is attributed to the vaporization of the oxide scale. More addition of the $LaCrO_3$ content reduced also the weight change of the Cr alloys. These mean that the oxide scale formed at the surface of the Cr alloy becomes stable with increasing number of oxidation cycle and$LaCrO_3$ content. The measured thermal expansion of the Cr alloy was well fitted to that of 8 mol% $Y_2O_3$-stabilized $ZrO_2$ electrolyte. These results demonstrate that $LaCrO_3$-dispersed Cr alloy is a useful material for metallic interconnector of solid oxide fuel cell.

  • PDF

고체 산화물 연료전지용 Cr계 금속 연결재 제조 및 특성 연구 (Fabrication and Characterization of Cr Alloy for Metallic Interconnect of Solid Oxide Fuel Cell)

  • 송락현
    • 한국수소및신에너지학회논문집
    • /
    • 제16권1호
    • /
    • pp.58-65
    • /
    • 2005
  • The $LaCrO_3$-dispersed Cr alloys for metallic interconnect of solid oxide fuel cell were prepared as a function of $LaCrO_3$ content in the range of 5 to 25 vol.% and were sintered at 1500$^{\circ}C$ under an Ar atmosphere with 5 vol.% $H_2$. The sintering and oxidation behaviors of these alloys were examined. The alloys indicated a good sinterability above 95% relative density at a given sintering condition, and their sintering densities is independent on $LaCrO_3$ content. The $LaCrO_3$ particles of the sintered alloys were concentrated on interfaces of Cr particles, and the size of the Cr particles increased with decreasing $LaCrO_3$ content, which is caused by inhibited grain growth of Cr particle by $LaCrO_3$ particle. The oxidation test showed all $LaCrO_3$-dispersed Cr alloys have good oxidation resistance as compared with pure Cr, which is attributed to presence of $LaCrO_3$ at the interface at which the oxidation reaction occurs rapidly. The Cr alloys with about 15 vol.% $LaCrO_3$ are very resistant to oxidation.

$H_2/O_2$ 비에 따른 Hybrid HVOF 용사된 $Cr_3C_2$-7wt%(NiCr) 용사층의 특성 및 산화거동 (Characteristics and oxidation behavior of the hybrid-HVOF sprayed $Cr_3C_2$-7wt%(NiCr) coatings depending on $H_2/O_2$ ratio)

  • 김병희;서동수
    • Journal of Welding and Joining
    • /
    • 제15권4호
    • /
    • pp.126-135
    • /
    • 1997
  • $H_2/O_2$ 비에 따른 Hybrid HVOF 용사된 $Cr_3C_2$-7wt%(NiCr) 용사층의 특성 및 산화거동 This study was performed to investigate the influence of fuel/oxygen ratio (F/O=3.2, 3.0, 2.8) on the characteristics and the oxidation behavior of the hybrid-HVOF sprayed $Cr_3C_2$-7wt%NiCr coatings. Decomposition and the oxidation of the $Cr_3C_2$was occured during spraying. The degree of transformation from $Cr_3C_2$to $Cr_7C_3$ was increased with decreasing the F/O ratio. The microstructural differences of the as sprayed coating with F/O ratio can not be distinguished, However, large pores were diminished and then the coatings became dense by heat treatment. Microhardness of the as-sprayed specimen which sprayed with F/O=3.0 condition was hightest ($Hv_{300}$=1140) and the hardness was increased to 1500 after heat treatment at $600^{\circ}C$ for 50hrs in air. It was supposed that hardness was increased due to the formation of $Cr_2O_3$ within $Cr_3C_2$/$Cr_7C_3$matrix and the densification of coating layer during heat treatment. Apparent activation energy for oxidation was varied from 21.2 kcal$mol^{-1}K^{-1}$ to 23.8 kcal$mol^{-1}K^{-1}$ with respect to the F/O ratio. The surface morphology was changed to porous and oxide chusters were grown after oxidation $1000^{\circ}C$ for 50 hours by the aggressive evolution of gas phase ($CrO_3$ and$CO_2$). The oxide cluster was composed of Ni and Cr.

  • PDF

산소가 첨가된 Cr 박막의 NH3 분위기에서의 질화 처리에 의한 구조적 특성 (Structural Characteristics by Nitridation of Oxygen Added Cr Thin Films in NH3 Atmosphere)

  • 김단비;김선태
    • 한국재료학회지
    • /
    • 제31권11호
    • /
    • pp.635-641
    • /
    • 2021
  • Cr thin films with O added are deposited on sapphire substrate by DC sputtering and are nitrided in NH3 atmosphere between 300 and 900 ℃ for various times. X-ray diffraction results show that nitridation begins at 500 ℃, forming CrN and Cr2N. Cr oxides of Cr2O3 are formed at 600 ℃. And, at temperatures higher than 900 ℃, the intermediate materials of Cr2N and Cr2O3 disappear and CrN is dominant. The atomic concentration ratios of Cr and O are 77% and 23%, respectively, over the entire thickness of as-deposited Cr thin film. In the sample nitrided at 600 ℃, a CrN layer in which O is substituted with N is formed from the surface to 90 nm, and the concentrations of Cr and N in the layer are 60% and 40%, respectively. For this reason, CrN and Cr2N are distributed in the CrN region, where O is substituted with N by nitridation, and Cr oxynitrides are formed in the region below this. The nitridation process is controlled by inter-diffusion of O and N and the parabolic growth law, with activation energy of 0.69 eV.

Sphene-Pink 안료에 미치는 CrCl3의 영향 (Influence of CrCl3 in Sphene-Pink Pigments)

  • 이현수;이병하
    • 한국세라믹학회지
    • /
    • 제45권5호
    • /
    • pp.268-275
    • /
    • 2008
  • In high temperature ceramic glazes, a stable range of pink-red colors producing $Cr_2O_3-SnO_2-CaO-SiO_2$ pigments are factored by Cassiterite and Malayaite relationship with $Cr_2O_3$. The experiment described the effect of $CrCl_3$ by adding $H_3BO_3$ as a mineralizer to increase the formation of Malayaite crystal, substituting $CrCl_3$ instead of $Cr_2O_3$ in pigment as a chromophore. Synthesized pigments were analyzed by XRD, FT-IR, Raman Spectroscop, UV and UV-vis. The result shows the differences in amount of crystal phases and oxidation state of Cr ion, which causes the color change. The melting point of $CrCl_3$ is lower than $Cr_2O_3$ which act as a mineralizer and makes the pigment synthesized in lower temperature at $1200^{\circ}C$. Holding 3 h firing at $900^{\circ}C$ where the synthesize forms shows better effect of Malayaite crystal phases and increasing engaged effect of $CrCl_3$ where the color pigmentation is more defined then in $Cr_2O_3$.

$LaCrO_3$가 분산된 Cr 합금의 구조 및 산화거동 (Structure and Oxidation Behavior of the $LaCrO_3$-dispersed Cr alloys)

  • 전광선;송락현;신동열;조중열
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 D
    • /
    • pp.1303-1305
    • /
    • 1998
  • In order to reduce or avoid oxidation problem at operation the interconnects in SOFCs have so far mostly been made of ceramic material. It has high chemical stability both under cathode and anode condition, relatively thermal expansion coefficient that matchs that of electrolyte material YSZ. But this material shown rather weak in the low oxygen atmosphere and thermal shock, and it has lower mechanical strength than alloys. To avoid these problems one may consider to use metals or alloys as materials for interconnects. Metallic interconnects are advantageous because of their high thermal and electronic conductivities. But it has some problems, Those are high thermal expansion and oxidation at high temperature in air. To solve these problems in the interconnection material in this study, $LaCrO_3$-dispersed Cr alloys for metallic interconnector of SOFC have been investigated as a fuction of $LaCrO_3$ content in the range of 5 to 25 vol.%. The Cr alloy were prepared by mixing Cr and $LaCrO_3$ powders in high-energy ball mill for 48h and by sintering under Ar atmosphere with 5vol.% $H_2$ for 10h at $1500^{\circ}C$. The alloys had a relative density of 95% and above. The Cr alloys in composed of two kind of small $LaCrO_3$ and large Cr particles. As the $LaCrO_3$ content increased, the Cr particle size decreased but the $LaCrO_3$ particle size remained contant. Also the oxidation tests show that the $LaCrO_3$-dispersed Cr is very resistant to oxidation in air. These results means that $LaCrO_3$-dispersed Cr is a useful material for metallic interconnect of planar SOFC.

  • PDF

CrAlN과 CrZrN의 산화 (Oxidation of CrAlN and CrZrN Films)

  • 김민정;김슬기;이상율;이동복
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2011년도 춘계학술대회 및 Fine pattern PCB 표면 처리 기술 워크샵
    • /
    • pp.33-35
    • /
    • 2011
  • Films of CrAlN and CrZrN were deposited on a steel substrate by closed field unbalanced magnetron sputtering, and their oxidation behaviors were investigated. CrAlN films consisted of dense, polycrystalline CrN and AlN fine columns. The formed oxides consisted primarily of crystalline $Cr_2O_3$ incorporated with $Al_2O_3$. The oxide layers were thin and compact so as to make CrAlN films more protective than CrN films. In case of CrZrN films, Zr atoms were dissolved in the CrN phase. Zr atoms advantageously refined the columnar structure, reduced the surface roughness, and increased the micro-hardness. However, the addition of Zr did not increased oxidation resistance, mainly because Zr was not a protective element. All the deposited films displayed relatively good oxidation resistance, owing to the formation of the highly protective $Cr_2O_3$ on their surface. The $Cr_{40}Zr_9N$ and $Cr_{31}Zr_{16}N$ films oxidized to $Cr_2O_3$ as the major phase and ${\alpha}-ZrO_2$ as the minor one, whereas the CrN film oxidized to $Cr_2O_3$.

  • PDF