• Title/Summary/Keyword: $Co_3O_4$/$Al_2O_3$

Search Result 559, Processing Time 0.027 seconds

Dy co-doping effect on photo-induced current properties of Eu-doped SrAl2O4 phosphor (Eu 도핑 SrAl2O4 형광체의 광 여기 전류 특성에 대한 Dy 코-도핑 효과)

  • Kim, Sei-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.48-53
    • /
    • 2009
  • $Eu^{2+}$-doped ${SrAl_2}{O_4}$ and $Eu^{2+}$, $Dy^{3+}$ co-doped ${SrAl_2}{O_4}$ phosphors have been synthesized by conventional solid state method. Photocurrent properties of $Eu^{2+}$ doped ${SrAl_2}{O_4}$ and $Eu^{2+}$, $Dy^{3+}$ co-doped ${SrAl_2}{O_4}$ phosphors, in order to elucidate $Dy^{3+}$ co-doping effect, during and after ceasing ultraviolet-ray (UV) irradiation have been investigated. The photocurrent of $Eu^{2+}$, $Dy^{3+}$ co-doped ${SrAl_2}{O_4}$ phosphors during UV irradiation was 4-times lower than that of $Eu^{2+}$-doped ${SrAl_2}{O_4}$ during UV irradiation, and 7-times higher than that of $Eu^{2+}$-doped ${SrAl_2}{O_4}$ after ceasing UV irradiation. The photocurrent results indicated that holes of charge carriers captured in hole trapping center during the UV irradiation and liberated after-glow process, and made clear that $Dy^{3+}$ of co-dopant acted as a hole trap. The photocurrent of ${SrAl_2}{O_4}$ showed a good proportional relationship to UV intensity in the range of $1{\sim}5mW/cm^2$, and $Eu^{2+}$-doped ${SrAl_2}{O_4}$ was confirmed to be a possible UV sensor.

Microwave Thermal Decomposition of CF4 using SiC-Al2O3 (SiC-Al2O3 촉매를 이용한 CF4의 마이크로파 열분해)

  • Choi, Sung-Woo
    • Journal of Environmental Science International
    • /
    • v.22 no.9
    • /
    • pp.1097-1103
    • /
    • 2013
  • Tetrafluoromethane($CF_4$) have been widely used as etching and chemical vapor deposition gases for semiconductor manufacturing processes. $CF_4$ decomposition efficiency using microwave system was carried out as a function of the microwave power, the reaction temperature, and the quantity of $Al_2O_3$ addition. High reaction temperature and addition of $Al_2O_3$ increased the $CF_4$ removal efficiencies and the $CO_2/CF_4$ ratio. When the SA30 (SiC+30wt%$Al_2O_3$) and SA50 (SiC+50wt%$Al_2O_3$) were used, complete $CF_4$ removal was achieved at $1000^{\circ}C$. The $CF_4$ was reacted with $Al_2O_3$ and by-products such as $CO_2/CF_4$ and $AlF_3$ were produced. Significant amount of by-product such as $AlF_3$ was identified by X-ray powder diffraction analysis. It also showed that the ${\gamma}-Al_2O_3$ was transformed to ${\alpha}-Al_2O_3$ after microwave thermal reaction.

A Study on the Fabrication and Mechanical Properties of $WC-Co-Al_2O_3$ Ceramic Composites Using WC Powders Synthesized by SHS Method and Commercial WC Powders (SHS 화학로법에 의해 합성된 WC 분말과 상용 WC 분말을 이용한 $WC-Co-Al_2O_3$ 세라믹 복합체의 제조 및 그 기계적 특성에 관한 연구)

  • Lee, K.R.;Cho, D.H.;Lee, H.B.;Park, S.
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.12
    • /
    • pp.1392-1400
    • /
    • 1995
  • WC-10wt%Co-Al2O3 ceramic composites, using both the SHS (Self-propagating High Temperature Synthesis) synthesized WC powder method and commercial WC powder, were prepared by varing WC-Co/Al2O3 vol% ratio and sintering temperature (1350℃∼1650℃) for 1 hr in Ar atmosphere. Mechanical characterization has been investigated by Instron meterial testing system and Vicker's hardness test. Compositional and structural chracterizations were carried out by energy-dispersive analysis of X-ray (EDAX) data and scanning electron microscope (SEM). Electrical characterization was carried out by the electrical resistivity measurement using 4-point probe method. As sintering period increased and Al2O3 contents decreased in WC-10wt%Co-Al2O3 ceramic composite, shrinkage and relative density increased, resulting in maximum values at 1600℃. Also the major matrix phase changed with increasing Al2O3 content from 0 to 100 vol%. It was also identified by SEM, EDAX, and electrical resistivity measurement. Based on the results of analysis of flexural strength, toughness and hardness, the mechanical properties of WC-10wt%Co-Al2O3 ceramic composites using the SHS synthesized WC powder were better than those WC-10wt%Co-Al2O3 ceramic composites using commercial WC powder because WC-10wt%Co-Al2O3 ceramic composites using the SHS synthesized WC powder were sintered very well due to small initial particle size. By the addition of 40 vol% Al2O3 [60(WC=10wt%Co)-40Al2O3], it was possible to obtain a proper candidate as a superalloy.

  • PDF

Microstructural Observation of Scales formed on HVOF-sprayed NiCoCrAlY Coatings (HVOF 용사된 NiCoCrAlY 코팅의 산호막 관찰)

  • Ko J. H;Lee D. B
    • Korean Journal of Materials Research
    • /
    • v.14 no.2
    • /
    • pp.110-114
    • /
    • 2004
  • High velocity oxy-fuel sprayed NiCoCrAlY coatings were oxidized between 1000 and $1200^{\circ}C$ in air, and the oxide scales were examined by XRD, SEM/EDS, and EPMA. The unoxidized coatings consisted mainly of ${\gamma}$'$-Ni_3$Al, with some ${\gamma}$-Ni. The major oxide formed on the coatings was $\alpha$ $-Al_2$$O_3$. Additionally, (CoCr$_2$$O_4$, $CoAl_2$$O_4$) spinels and $Al_{5}$ $Y_3$$O_{12}$ coexisted. NiO was not found, despite of high amount of Ni in the coating. Below the oxide layer, internally formed $Al_2$$O_3$ existed.

Mechanical Properties of $Al_2O_3-ZrO_2$ Ceramics Prepared by Co-precipitation Method (공침법으로 제조한 $Al_2O_3-ZrO_2$ 계의 세라믹스의 기계적 성질)

  • 이홍림;홍기곤;정형진
    • Journal of the Korean Ceramic Society
    • /
    • v.23 no.3
    • /
    • pp.44-52
    • /
    • 1986
  • $Al_2O_3-ZrO_2$ ceramics was obtained by the co-precipitation method using $Al_2(SO_4)_2$.$18H_2O$ and $ZrOCl_2$.$8H_2O$ as starting materials $MgCl_2$.$6H_2O$ as a sintering aid and NH4OH as a hydrolyzing agent. The coprecipitate from the above raw materials was calcined at 125$0^{\circ}C$ for 1h and again sintered at 1$650^{\circ}C$ for 2h before measurements of strength hardness and fracture toughness. MgO addition was found to increase mechanical properties of the $Al_2O_3-ZrO_2$ system. The strength and frac-ture toughness of $Al_2O_3-ZrO_2$ ceramics were considered to be increased by stress-induced phase tranforma-tion of $ZrO_2$.

  • PDF

A Study on Reaction Characteristics of $CO_2$ Conversion Methanation over Pt Catalysts for Reduction of GHG (온실가스 저감을 위한 Pt계 촉매상 $CO_2$ Methanation 전환반응 특성에 관한 연구)

  • Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.23 no.6
    • /
    • pp.572-576
    • /
    • 2012
  • This study presents the $CO_2$ methanation reaction on Pt catalysts for reducing the amount of $CO_2$, one of greenhouse gases. The AlO(OH) of $Al_2O_3$precusor was used as a support via a thermal treatment and the Pt was used as an active metal. In XRD results, it was confirmed that the Pt was well dispersed and the support existed as the gamma $Al_2O_3$phase. The $Pt/Al_2O_3$ catalyst calcined at $600^{\circ}C$ showed the highest conversion efficiency and selectivity.

Effect of Ti-Doped Al2O3 Coating Thickness and Annealed Condition on Microstructure and Electrochemical Properties of LiCoO2 Thin-Film Cathode (Ti 첨가 Al2O3 코팅층의 두께와 열처리 조건이 LiCoO2 양극 박막의 미세구조와 전기화학적 특성에 미치는 영향)

  • Choi, Ji-Ae;Lee, Seong-Rae;Cho, Won-Il;Cho, Byung-Won
    • Korean Journal of Materials Research
    • /
    • v.17 no.8
    • /
    • pp.447-451
    • /
    • 2007
  • We investigated the dependence of the various annealing conditions and thickness ($6\sim45nm$) of the Ti-doped $Al_2O_3$ coating on the electrochemical properties and the capacity fading of Ti-doped $Al_2O_3$ coated $LiCoO_2$ films. The Ti-doped-$Al_2O_3$-coating layer and the cathode films were deposited on $Al_2O_3$ plate substrates by RF-magnetron sputter. Microstructural and electrochemical properties of Ti-doped-$Al_2O_3$-coated $LiCoO_2$ films were investigated by transmission electron microscopy (TEM) and a dc four-point probe method, respectively. The cycling performance of Ti-doped $Al_2O_3$ coated $LiCoO_2$ film was improved at higher cut-off voltage. But it has different electrochemical properties with various annealing conditions. They were related on the microstructure, surface morphology and the interface condition. Suppression of Li-ion migration is dominant at the coating thickness >24.nm during charge/discharge processes. It is due to the electrochemically passive nature of the Ti-doped $Al_2O_3$ films. The sample be made up of Ti-doped $Al_2O_3$ coated on annealed $LiCoO_2$ film with additional annealing at $400^{\circ}C$ had good adhesion between coating layer and cathode films. This sample showed the best capacity retention of $\sim92%$ with a charge cut off of 4.5 V after 50 cycles. The Ti-doped $Al_2O_3$ film was an amorphous phase and it has a higher electrical conductivity than that of the $Al_2O_3$ film. Therefore, the Ti-doped $Al_2O_3$ coated improved the cycle performance and the capacity retention at high voltage (4.5 V) of $LiCoO_2$ films.

A Study on Synthesis of Mayenite by Using Recycled Aluminium Resource for Application in Insulating Material (알루미늄 재활용 소재를 이용한 내화재용 Mayenite 합성 연구)

  • Im, Byoungyong;Kang, Yubin;Joo, Soyeong;Kim, Dae-Guen
    • Resources Recycling
    • /
    • v.29 no.6
    • /
    • pp.65-72
    • /
    • 2020
  • Black dross is a dark gray dross generated during the aluminum recycling process that uses flux, and contains NaCl, KCl, Al2O3, MgO, etc. Black dross is separated into soluble substances (NaCl, KCl) and insoluble substances (Al2O4, MgO) through the dissolution process. Soluble materials can be reused as salt flux, and Al2O3 and MgO can be upcycled to various ceramic materials through the synthesis process. In this study, Mayenite was synthesized using Al2O3 and MgO recovered from black dross, and the synthesis was performed according to the mixing ratio and reaction temperature. It was confirmed that when Mayenite was synthesized using black dross (spinel) and CaCO3, precursors were changed to Mg0.4Al2.4O4 and CaO at 700 ℃, and to Ca12Al14O33 (Mayenite) after 800 ℃. In the mixing conditions experiment, it was confirmed that the Mayenite XRD peak increased with increase of the CaCO3 content, and the Mg0.4Al2.4O4 XRD peak decreased. As a result of the BET analysis of the synthesized powder, the surface area decreased as the fine particles were grown and agglomerated in the process of generating mayenite.

Glycerol Steam Reforming for Hydrogen Production on Metal-ceramic Core-shell CoAl2O4@Al Composite Structures (금속-세라믹 Core-Shell CoAl2O4@Al 구조체를 적용한 불균일계 촉매의 글리세롤 수소전환 반응특성)

  • Kim, Jieun;Lee, Doohwan
    • Clean Technology
    • /
    • v.21 no.1
    • /
    • pp.68-75
    • /
    • 2015
  • In this study, we investigated the structure and properties of a highly heat conductive metal-ceramic core-shell CoAl2O4@Al micro-composite for heterogeneous catalysts support. The CoAl2O4@Al was prepared by hydrothermal surface oxidation of Al metal powder, which resulted in the structure with a high heat conductive Al metal core encapsulated by a high surface area CoAl2O4 shell. For comparison, CoAl2O4 was also prepared by co-precipitation method and also utilized for a catalyst support. Rh catalysts supported on CoAl2O4@Al and CoAl2O4 were prepared by incipient wetness impregnation and characterized by N2 adsorption, X-ray diffraction (XRD), scanning electron microscopy (SEM), CO chemisorption, and temperature-programmed reduction (TPR). The properties of catalysts were investigated for glycerol steam reforming reaction for hydrogen production at 550 ℃. Rh/CoAl2O4@Al exhibited about 2.8 times higher glycerol conversion turnover frequency (TOF) than Rh/CoAl2O4 due to facilitated heat transport through the core-shell structure. The CoAl2O4@Al and CoAl2O4 also showed some catalytic activities due to a partial reduction of Co on the support, and a higher catalytic activity was also found on the CoAl2O4@Al core-shell than CoAl2O4. These catalysts, however, displayed deactivation on the reaction stream due to carbon deposition on the catalysts surface.

Fabrication of Nanocrystalline Co-Al2O3 from Mechanically Synthesized Powders by Rapid Sintering (기계적으로 합성한 분말로부터 급속 소결에 의한 나노 구조의 Co-Al2O3 복합재료 제조)

  • Park, Na-Ra;Shon, In-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.12
    • /
    • pp.961-966
    • /
    • 2012
  • Nano-sized Co and $Al_2O_3$ powders were successfully synthesized from $3/4Co_3O_4$ and 2Al by high-energy ball milling. A dense nanocrystalline $2.25Co-Al_2O_3$ composite was consolidated from mechanically synthesized powders by the pulsed current activated sintering (PCAS) method within 2 min. Consolidation was accomplished under the combined effects of a pulsed current and mechanical pressure. A dense $2.25Co-Al_2O_3$ with relative density of up to 95% was produced under simultaneous application of a 80 MPa pressure and a pulsed current of 2800 A. The fracture toughness and hardness of the $2.25Co-Al_2O_3$ composite were $8MPa{\cdot}m^{1/2}$, $870kg/mm^2$, respectively.