• Title/Summary/Keyword: $Co-Al_{2}O_{3}$

Search Result 1,036, Processing Time 0.032 seconds

Flexural Strength of Macroporous Silicon Carbide Ceramics (거대기공 다공질 탄화규소 세라믹스의 꺾임강도)

  • Lim, Kwang-Young;Kim, Young-Wook;Song, In-Hyuck;Bae, Ji-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.5
    • /
    • pp.360-367
    • /
    • 2011
  • Macroporous silicon carbide (SiC) ceramics were fabricated by powder processing and polymer processing using carbon-filled polysiloxane as a precursor. The effects of the starting SiC polytype, template type, and template content on porosity and flexural strength of macroporous SiC ceramics were investigated. The ${\beta}$-SiC powder as a starting material or a filler led to higher porosity than ${\alpha}$-SiC powder, owing to the impingement of growing ${\alpha}$-SiC grains, which were transformed from ${\beta}$-SiC during sintering. Typical flexural strength of powder-processed macroporous SiC ceramics fabricated from ${\alpha}$-SiC starting powder and polymer microbeads was 127 MPa at 29% porosity. In contrast, that of polymer-processed macroporous SiC ceramics fabricated from carbon-filled polysiloxane, ${\beta}$-SiC fillers, and hollow microspheres was 116MPa at 29% porosity. The combination of ${\alpha}$-SiC starting powder and a fairly large amount (10 wt%) of $Al_2O_3-Y_2O_3$ additives led to macroporous SiC ceramics with excellent flexural strength.

Preparation and Characterization of Ni-Co Bimetallic Catalyst for Methanation (메탄화 반응을 위한 Ni-Co 이원 금속 촉매의 제조와 특성 분석)

  • Yia, Jong-Heop;Kanga, Mi-Yeong;Kim, Woo-Young;Cho, Won-Jun
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.5
    • /
    • pp.33-38
    • /
    • 2009
  • Synthetic natural gas was producd by the reaction of carbon monoxide and hydrogen via methanation. Ni-Co bimetallic catalyst supported on $Al_2O_3$ for methanation was prepared using deposition-precipitation method. For the comparison, Ni, Co monometallic catalyst was prepared using the same method. The prepared catalysts were characterized by TEM, XRD and TPR and applied to methanation reaction. The catalysts prepared using deposition-precipitation method showed the high metal dispersion. The activity of Ni-Co bimetallic catalyst was higher than that of Ni, Co monometallic catalyst. TPR measurements indicated that Ni-Co bimetallic catalyst had more active hydrogen species than Ni, Co monometallic catalyst due to the synergetic effect in the presence of Ni and Co.

  • PDF

Comparison of bond strengths of ceramic brackets bonded to zirconia surfaces using different zirconia primers and a universal adhesive

  • Lee, Ji-Yeon;Ahn, Jaechan;An, Sang In;Park, Jeong-won
    • Restorative Dentistry and Endodontics
    • /
    • v.43 no.1
    • /
    • pp.7.1-7.7
    • /
    • 2018
  • Objectives: The aim of this study is to compare the shear bond strengths of ceramic brackets bonded to zirconia surfaces using different zirconia primers and universal adhesive. Materials and Methods: Fifty zirconia blocks ($15{\times}15{\times}10mm$, Zpex, Tosoh Corporation) were polished with 1,000 grit sand paper and air-abraded with $50{\mu}m$ $Al_2O_3$ for 10 seconds (40 psi). They were divided into 5 groups: control (CO), Metal/Zirconia primer (MZ, Ivoclar Vivadent), Z-PRIME Plus (ZP, Bisco), Zirconia Liner (ZL, Sun Medical), and Scotchbond Universal adhesive (SU, 3M ESPE). Transbond XT Primer (used for CO, MZ, ZP, and ZL) and Transbond XT Paste was used for bracket bonding (Gemini clear ceramic brackets, 3M Unitek). After 24 hours at $37^{\circ}C$ storage, specimens underwent 2,000 thermocycles, and then, shear bond strengths were measured (1 mm/min). An adhesive remnant index (ARI) score was calculated. The data were analyzed using one-way analysis of variance and the Bonferroni test (p = 0.05). Results: Surface treatment with primers resulted in increased shear bond strength. The SU group showed the highest shear bond strength followed by the ZP, ZL, MZ, and CO groups, in that order. The median ARI scores were as follows: CO = 0, MZ = 0, ZP = 0, ZL = 0, and SU = 3 (p < 0.05). Conclusions: Within this experiment, zirconia primer can increase the shear bond strength of bracket bonding. The highest shear bond strength is observed in SU group, even when no primer is used.

The Effects of a Filler with a High Coefficient of Thermal Expansion on a Sealant for High-Temperature (750 ~ 850℃) SOFCs (고온 (750 ~ 850℃) SOFC용 밀봉재의 특성에 미치는 고열팽창계수를 갖는 필러의 영향)

  • Kim, Bit Nam;Lee, Mi Jai;Hwang, Jong Hee;Lim, Tae Young;Kim, Jin Ho;Hwang, Hae Jin;Kim, Il Won;Chung, Woon Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.470-475
    • /
    • 2013
  • In this study, we report that effects of a filler with a high coefficient of thermal expansion on a sealant for high-temperature ($750{\sim}850^{\circ}C$) SOFC. We designed a $SiO_2-BaO-ZnO-B_2O_3-Al_2O_3$ glass system with a softening temperature higher than $750^{\circ}C$. The properties of the glass system show not only low volumetric shrinking but also low swelling. The glass system did not create a crystal phase during along-term heat treatment. We fabricated a seal gasket with 0, 10, 15, and 20 wt% cristobalite added as filler materials with glass powder. The coefficient of thermal expansion of the seal gasket increased according to cristobalite content. During along-term heat treatment, the leak rate decreased by about 5% after a heat treatment in an oxidizing atmosphere at $750^{\circ}C$ for 2000 h, also decreasing by about 6% after a heat treatment in a reducing atmosphere at $750^{\circ}C$ for 1000 h.

A Study of Fluoride and Arsenic Adsorption from Aqueous Solution Using Alum Sludge Based Adsorbent (알럼 슬러지 기반 흡착제를 이용한 수용액상 불소 및 비소 흡착에 관한 연구)

  • Lee, Joon Hak;Ji, Won Hyun;Lee, Jin Soo;Park, Seong Sook;Choi, Kung Won;Kang, Chan Ung;Kim, Sun Joon
    • Economic and Environmental Geology
    • /
    • v.53 no.6
    • /
    • pp.667-675
    • /
    • 2020
  • An Alum-sludge based adsorbent (ASBA) was synthesized by the hydrothermal treatment of alum sludge obtained from settling basin in water treatment plant. ASBA was applied to remove fluoride and arsenic in artificially-contaminated aqueous solutions and mine drainage. The mineralogical crystal structure, composition, and specific surface area of ASBA were identified. The result revealed that ASBA has irregular pores and a specific surface area of 87.25 ㎡ g-1 on its surface, which is advantageous for quick and facile adsorption. The main mineral components of the adsorbent were found to be quartz(SiO2), montmorillonite((Al,Mg)2Si4O10(OH)2·4H2O) and albite(NaAlSi3O8). The effects of pH, reaction time, initial concentration, and temperature on removal of fluoride and arsenic were examined. The results of the experiments showed that, the adsorbed amount of fluoride and arsenic gradually decreased with increasing pH. Based on the results of kinetic and isotherm experiments, the maximum adsorption capacity of fluoride and arsenic were 7.6 and 5.6 mg g-1, respectively. Developed models of fluoride and arsenic were suitable for the Langmuir and Freundlich models. Moreover, As for fluoride and arsenic, the increase rate of adsorption concentration decreased after 8 and 12 hr, respectively, after the start of the reaction. Also, the thermodynamic data showed that the amount of fluoride and arsenic adsorbed onto ASBA increased with increasing temperature from 25℃ to 35℃, indicating that the adsorption was endothermic and non-spontaneous reaction. As a result of regeneration experiments, ASBA can be regenerated by 1N of NaOH. In the actual mine drainage experiment, it was found that it has relatively high removal rates of 77% and 69%. The experimental results show ASBA is effective as an adsorbent for removal fluoride and arsenic from mine drainage, which has a small flow rate and acid/neutral pH environment.

A unhomogeneity of critical current at the long length coated conductors (Coated conductor에서 임계전류의 불균일)

  • Lee, Nam-Jin;Oh, Sang-Soo;Kim, Ho-Sup;Ha, Dong-Woo;Ha, Hong-Soo;Ko, Rock-Kil;Kim, Tae-Hyung;Moon, Seung-Hyun;Youm, Do-Jun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.1-2
    • /
    • 2009
  • The high critical current ($I_c$, A) of SmBCO coated conductor in a magnetic field, the high production rate and the high material yield are promising for applications. The inhomogeneity of Ie at the long length coated conduct is very important problem for electric application. So we researched the reason of inhomogeneity of $I_c$ at long length tape prepared by batch type co-evaporation system called by EDDC. The long length SmBCO coated conductors were developed on $LaMnO_3/IBAD-MgO/Y_2O_3/Al_2O_3$/Hastelloy C276 template. The distribution of $I_c$ are from 0 to 397 A/cm at 77 K and self field. We have studied the microstructures of these films by using SEM, EDS and X-ray diffraction. The XRD and composition by EDS results of SmBCO film reveals subtle difference. But, the microscopic observation by SEM show the microcrack at the sample with low $I_c$.

  • PDF

CIGS 박막 태양전지를 위한 $(In,Ga)_2Se_3$ 전구체 제작 및 분석

  • Jo, Dae-Hyeong;Jeong, Yong-Deok;Park, Rae-Man;Han, Won-Seok;Lee, Gyu-Seok;O, Su-Yeong;Kim, Je-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.285-285
    • /
    • 2010
  • $Cu(In,Ga)Se_2$ (CIGS) 박막 태양전지 제조에는 동시증발법 (co-evaporation)으로 Cu, In, Ga, Se 각 원소의 증발을 세 단계로 제어하여 CIGS 박막을 증착하는 3-stage 방법이 널리 이용된다[1]. 3-stage 중 1st-stage에서는 In, Ga, Se 원소 만을 증발시켜 $(In,Ga)_2Se_3$ 전구체 (precursor) 박막을 성장시킨다. 고효율의 CIGS 태양전지를 위해서는 $(In,Ga)_2Se_3$ 전구체 증착의 공정 변수와 이에 따른 박막 특성의 이해가 중요하다. 본 연구에서는 Mo 박막이 증착된 소다석회유리 (soda lime glass) 기판에 동시증발장비를 이용하여 280 380 의 기판 온도에서 In, Ga, Se 물질을 증발시켜 $(In,Ga)_2Se_3$/Mo/glass 시료를 제작하였으며 XRD, SEM, EDS 등의 방법을 이용하여 특성을 분석하였다. XRD 분석 결과 기판 온도 $280{\sim}330^{\circ}C$에서는 $(In,Ga)_2Se_3$ 박막의 (006), (300) 피크가 관찰되었으며, 기판 온도가 증가할수록 (006) 피크 세기는 감소하였고 (300) 피크 세기는 증가하였다. $380^{\circ}C$에서는 (110)을 포함한 다수의 피크가 관찰되었다. 그레인 (grain) 크기는 기판 온도가 증가할수록 커지며 Ga/(In+Ga) 조성비는 기판 온도에 따라 일정함을 각각 SEM과 EDS 측정을 통해 알 수 있었다. $(In,Ga)_2Se_3$ 전구체의 (300) 배향은 CIGS 박막의 (220/204) 배향을 촉진하고[2], 이것은 높은 광전변환효율에 기여하는 것으로 알려져 있다. 때문에 $(In,Ga)_2Se_3$의 (300) 피크의 세기가 가장 큰 조건인 $330^{\circ}C$를 1st-stage 증착 온도로 하여 3-stage CIGS 태양전지 공정을 수행하였으며, $MgF_2$/Al/Ni/ITO/i-ZnO/CdS/CIGS/Mo/glass 구조의 셀에서 광전변환효율 16.96%를 얻었다.

  • PDF

AMOLED Panel Using Transparent Bottom Gate IGZO TFT (Bottom Gate IGZO 박막트랜지스터를 이용한 투명 AMOLED 패널 제작)

  • Cho, D.H.;Yang, S.H.;Byun, C.W.;Shin, J.H.;Lee, J.I.;Park, E.S.;Kwon, O.S.;Hwang, C.S.;Chu, H.Y.;Cho, K.I.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04a
    • /
    • pp.39-40
    • /
    • 2008
  • We have examined post-annealing and passivation for the transparent bottom gate IGZO TFT having an inverse co-planar structure. The oxygen-vacuum two step annealing enhanced the field effect mobility up to 18 $cm^2$/Vsandthesub-threshold swing down to 0.2V/dec. However, the hysterysis and the bias stability problems could not be solved just by post-annealing. Thus, we have passivated the bottom gate IGZO TFTs with organic and inorganic materials. $Ga_2O_3$, $Al_2O_3$, $SiO_2$ and some polymer materials were effective materials for passivations. The hysterysis and the stability of the TFTs were remarkably improved by the passivations. We have manufactured the AMOLED panel with the transparent bottom gate IGZO TFT array successfully.

  • PDF

Studies on the Activity Properties of Pd-only Three-Way Catalyst for the Purification of Automobile Exhaust Emissions (자동차 배기가스 정화용 Pb-only 삼원촉매의 활성특성에 관한 연구)

  • 신병선;김상수;이길우;정명근;배재호;정석진
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.5
    • /
    • pp.667-676
    • /
    • 1999
  • The roles of ceria on three-way catalyst is to improve the noble metal dispersion and thermal stability of support ${\gamma}$-$Al_2O_3$. And, ceria has a oxygen storage capacity(OSC) under fuel rich/lean conditions to improve the operating windows of NOx, THC and CO conversion. However, ceria has weak thermal stability under high temperature due to the crystallite growth. So that, the OSC of ceria is decreased, and then the conversions of NOx, THC and CO is decreased. One way of enhancing the thermal stability and NOx, THC and CO conversion Pd-only catalyst is to improve as well as its thermal stability and oxygen storage capacity of the ceria. Especially, the appropriate mixing ratios of bulk and stabilized ceria are very important for designing principles of Pd-only three-way catalysts. In this paper, we discussed the thermal properties of stabilizedand unstabilized (bulk) ceria, and the oxygen storage capacity (OSC) of catalysts, and found the correlation between activity and the OSC of Pd-only catalysts with various different mixing ratios of bulk and stabilized ceria. Finally, we propose the design principles to improve the thermal stability of washcoated Pd-only catalysts.

  • PDF

Heat Treatment Effect on the Microstructure of 8YSZ Thick Film (열처리 온도에 따른 8YSZ 후막의 미세구조)

  • Han, Sang-Hoon;Noh, Hyo-Seop;Na, Dong-Myung;Jin, Guang-Hu;Lee, Woon-Young;Park, Jin-Seong
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.1
    • /
    • pp.106-109
    • /
    • 2011
  • In order to fabricate 8YSZ thick film by silk screen printing, YSZ(yttria-stabilized zirconia) commercial powder was used as starting materials. Paste for screen printing was made by mixing 8YSZ powder and organic vehicles. 8YSZ thick film was formed on $Al_2O_3$ substrate. The crystal structure, and microstructure were investigated. Grain size of 8YSZ was increased with increasing calcination temperature and rapid grain growth was shown after calcination at $1300^{\circ}C$. Microstructure showed the mixture of large and small grain size after $1400^{\circ}C$ sintering. Shrinkage rate of 8YSZ thick film sintered at $1400^{\circ}C$ was more than 40%.