• Title/Summary/Keyword: $Co-Al_{2}O_{3}$

Search Result 1,035, Processing Time 0.026 seconds

Comparative Compressional Behavior of Zeolite-W in Different Pressure-transmitting Media (제올라이트-W의 압력전달매개체에 따른 체적탄성률 비교 연구)

  • Seoung, Donghoon;Kim, Hyeonsu;Kim, Pyosang;Lee, Yongmoon
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.3
    • /
    • pp.169-176
    • /
    • 2021
  • This study aimed to fundamentally understand structural changes of zeolite under pressure and in the presence of different pressure-transmitting media (PTM) for application studies such as immobilization of heavy metal cation or CO2 storage using pressure. High-pressure X-ray powder diffraction study was conducted on the zeolite-W (K6.4Al6.5Si25.8O64× 15.3H2O, K-MER) to understand linear compressibility and the bulk moduli in different PTM conditions. Zeolite-w is a synthetic material having the same framework as natural zeolite merlinoite ((K, Ca0.5, Ba0.5, Na)10 Al10Si22O64× 22H2O). The space group of the sample was identified as I4/mmm belonging to the tetragonal crystal system. Water, carbon dioxide, and silicone-oil were used as pressure-transmitting media. The mixture of sample and each PTM was mounted in a diamond anvil cell (DAC) and then pressurized up to 3 GPa with an increment of ca. 0.5 GPa. Pressure-induced changes of powder diffraction patterns were measured using a synchrotron X-ray light source. Lattice constants, and bulk moduli were calculated using the Le-Bail method and the Birch-Murnaghan equation. In all PTM conditions, linear compressibility of c-axis (𝛽c) was 0.006(1) GPa-1 or 0.007(1) GPa-1. On the other hand, the linear compressibility of a(b)-axis (𝛽a) was 0.013(1) GPa-1 in silicone-oil run, which is twice more compressible than the a(b)-axis in water and carbon dioxide runs, 𝛽a = 0.006(1) GPa-1. The bulk moduli were measured as 50(3) GPa, 52(3) GPa, and 29(2) GPa in water, carbon dioxide, and silicone-oil run, respectively. The orthorhombicities of ac-plane in the water, and carbon dioxide runs were comparatively constant, near 0.350~0.353, whereas the value decreased abruptly in the silicone-oil run following formula, y = -0.005(1)x + 0.351(1) by non-penetrating pressure fluid condition.

Calculations of Equilibrium Species and Solution Combustion Process for Spray Combustion Synthesis (SCS) (분사연소합성(SCS)을 위한 평형종 계산과 용액연소공정)

  • ;;;;Gary L. Messing
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.6
    • /
    • pp.545-550
    • /
    • 2001
  • 본 연구에서는 분사연소합성(SCS)을 위한 기초단계로서 용액연소합성에 대한 거동을 살펴보고자 알루미나 합성을 모델로 하였으며 이를 위해 전구체에 대한 열분해거동, 그리고 각 온도에서의 평형종 분압 계산 및 합성과정을 조사하였다. 각각의 열중량 분석(TGA) 결과 산화제와 환원제(연료)의 열분해 이력이 서로 다르게 나타났으며, 열역학 응용 프로그램인 ChemSag에 의한 평형종 분압의 계산에서 연소속도를 저하시킬 수 있는 $CO_2$와 수증기 가스 분압이 상당부분 존재하였다. 산화제/환원제 혼합물의 열분석(DTA/TG) 결과 산화제와 환원제의 열분해 거동의 차이, 그리고 매우 작은 시료의 양으로 인해 263$^{\circ}C$에서 발열피크가 매우 작게 나타났다. 열분석 시료에 비해 발열 에너지를 높이기 위해 산화제와 환원제 혼합 전구체를 비이커에서 증기압을 조절하며 가열시켜 본 결과 27$0^{\circ}C$에서 $\alpha$-Al$_2$O$_3$생성물을 얻을 수 있었다. 따라서 분사연소합성 반응을 통해 세라믹 원료를 합성하기 위해서는 연소과정 중 열분해 거동과 평형종의 분압을 고려하여야 한다.

  • PDF

Fabrication and Characterization of Alumina Sol for Coating by a Method of the Mechanical Milling (기계적 분쇄방법을 통한 코팅용 알루미나 졸의 제조 및 평가)

  • Yu, Jeong-Hwan;Jung, Seung-Hwa;Jo, Bum-Rae;Hong, Gyung-Pyo;Mun, Jong-Soo;Kang, Jong-Bong
    • Korean Journal of Materials Research
    • /
    • v.18 no.8
    • /
    • pp.417-421
    • /
    • 2008
  • $Al_2O_3$ sol with long-term stability was prepared by mechanical milling. Thin films were evaluated and created for use as coating materials. The particle size of the manufactured sol was 98 nm when 2 wt% of nitric acid was added. This indicates that the viscosity of the sol is 12 cps and that it has long-term stability. The thickness of the thin films, which varied from 100 nm to 500 nm, could be managed by adjusting the draw rate and the amount of an organic additive. A thin film heated to $500^{\circ}C$ indicated a hydrophilic property against water and excellent permeability against a visible ray.

Near IR Luminescence Properties of Er-doped Sol-Gel Films (Er이 도핑된 졸-겔 코팅막의 발광특성)

  • Lim, Mi-Ae;Seok, Sang-Il;Kim, Ju-Hyeun;Ahn, Bok-Yeop;Kwon, Jeong-Oh
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.136-136
    • /
    • 2003
  • In fiber optic networks, system size and cost can be significantly reduced by development of optical components through planar optical waveguides. One important step to realize the compact optical devices is to develop planar optical amplifier to compensate the losses in splitter or other components. Planar amplifier provides optical gain in devices less than tens of centimeters long, as opposed to fiber amplifiers with lengths of typically tens of meters. To achieve the same amount of gain between the planar and fiber optical amplifier, much higher Er doping levels responsible for the gain than in the fiber amplifier are required due to the reduced path length. These doping must be done without the loss of homogeniety to minimize Er ion-ion interactions which reduce gain by co-operative upconversion. Sol-gel process has become a feasible method to allow the incorporation of Er ion concentrations higher than conventional glass melting methods. In this work, Er-doped $SiO_2$-A1$_2$ $O_3$ films were prepared by two different method via sol -Eel process. Tetraethylorthosilicate(TEOS)/aluminum secondary butoxide [Al (OC$_4$ $H_{9}$)$_3$], methacryloxypropylcnethoxysaane(MPTS)/aluminum secondary butofde [Al(OC$_4$ $H_{9}$)$_3$] systems were used as starting materials for hosting Er ions. Er-doped $SiO_2$-A1$_2$ $O_3$ films obtahed after heat-treating, coatings on Si substrate were characterized by X-ray din action, FT-IR, and N-IR fluorescence spectroscopy. The luminescence properties for two different processing procedure will be compared and discussed from peak intensity and life time.

  • PDF

Growth and characterization of Zn layered-double hydroxide (LDH) based two-dimensional nanostructure

  • Nam, Gwang-Hui;Baek, Seong-Ho;Im, Ji-Su;Lee, Sang-Seok;Park, Il-Gyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.371.1-371.1
    • /
    • 2016
  • 다양한 물질계의 2차원 나노구조는 그래핀과 함께 그 고유특성으로 최근 광전소자, 전자소자, 센서, 에너지 생성 및 저장과 수소에너지 생성 등의 응용으로 매우 많은 관심을 받고 있다. 특히 층상이중수산화물 (layered-double hydroxide; LDH) 2차원 나노구조는 생성의 용이성과 층상 내 금속 이온의 교환을 통한 특성의 자유로운 제어가 가능하므로 많은 관심을 받고 있다. 층상이중수산화물 화합물은 [Zn(1-x) MIII(x)(OH)2][$An-x/n{\cdot}mH2O$] (MIII = Al, Cr, Ga; An- = CO32-, Cl-, NO3-, CH3COO-) 구조로써, Brucite-type 구조 내에서 3가 양이온의 상태에 따라서 다양한 특성을 제어할 수 있는 장점이 있다. 이러한 장점으로 인해 층상이중수산화물 화합물은 촉매나, 에너지 저장, 음이온 교환 및 흡착, 화학적 촉매, 바이오 소자 등에 응용이 연구되고 있으며, 다양한 금속 산화물을 제조하기 위한 중간자 precursor로써도 연구되고 있다. 하지만, 이러한 대부분의 연구들을 통한 결과물들이 분말 및 수용액 상태로 남게 되며, 이러한 화합물의 특성을 제어하기 어려운 문제점이 있다. 더욱이 이러한 나노구조물들을 다양한 소자로 응용하기 위해서는 상용의 실리콘이나 glass 등의 기판형태의 물질상에 성장시킬 수 있어야 하며, 그러한 기판 위에서의 형상 및 특성 제어가 용이해야 한다. 따라서 본 연구에서는 실리콘 기판을 적용한 Zn기반의 층상이중 수산화물 화합물을 성장하고, 하부물질의 조성제어를 통한 층상이중수산화물 화합물의 형상제어가 가능한 기술에 관한 연구를 보고하고자 한다. 이를 위한 하부물질의 조성은 Zn와 Al을 통해 이루어지며, 기형성된 Al2O3박막을 핵형성층으로 활용한다. 이러한 방법으로 형성된 층상이중수산화물 화합물에 대해 이차전자주사현미경, 투과전자현미경 및 X-ray회절기법을 통해 구조분석을 하고, Raman 및 광발광스펙트럼 분석을 통해 광학적 분석을 시행함으로써, 층상이중수산화물이 기판상에서 형성되는 메커니즘에 관한 규명을 시행하였다. 이러한 분석연구를 통해 핵형성층의 에칭 따라 실리콘 기판상에서 성장하는 층상이 중수산화물 화합물의 형상 및 조성이 제어되는 메커니즘을 구명하였다.

  • PDF

Fabrication of Calcium Phosphate Glass Using Eggshell and its Crystallization Behavior

  • Kang, Tea-Sung;Lee, Sang-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.5
    • /
    • pp.395-399
    • /
    • 2017
  • The thermal properties and crystallization behavior of calcium phosphate glass fabricated using eggshell were examined. Nature eggshell has several impurities in the main component of $CaCO_3$. To manufacture calcium phosphate glass, washed eggshell was dissolved in aqua-regia while adding a solution of isopropyl alcohol, D. I. water and phosphoric acid. The calcined precursor was melted at $1000^{\circ}C$, and the glass ($T_g$ : $540^{\circ}C$) was crystallized at $620{\sim}640^{\circ}C$, which temperature range is relatively low compared to the crystallization temperature of other general types of calcium phosphate glass. The calcium phosphate glass using eggshell was successfully crystallized without any additional nucleating agents due to the multiple effects of impurities such as $Fe_2O_3$, $Al_2O_3$, SrO and $SiO_2$ in the eggshell. The main crystalline phase was ${\beta}-Ca(PO_3)_2$ and a biocompatible material, hydroxyapatite, was also observed. The crystallization process was completed under the condition of a holding time of only 1 h at the low temperature.

Application of Science for Interpreting Archaeological Materials(III) Characterization of Some Western Asia Glass Vessels from South Mound of Hwangnamdaechong (고고자료의 자연과학 응용(III) 황남대총(남분)의 일부 서역계 유리제품에 대한 과학적 특성 분류)

  • Kang, Hyung Tae;Cho, Nam Chul
    • Korean Journal of Heritage: History & Science
    • /
    • v.41 no.1
    • /
    • pp.5-19
    • /
    • 2008
  • Thirty six samples of Western asia glass vessel shards which were excavated from South Mound of Hwangnamdaechong were each measured for thickness, pore size and specific gravity and analyzed for ten major compositions and thirteen trace elements. The glass samples with colorless, greenish blue and dark purple blue were well classified by principal component analysis(PCA). All glass shards of Hwangnamdaechong belonged to Soda glass system ($Na_2O-CaO-SiO_2$) which have the range of 14~17% $Na_2O$ and 5~6% CaO. The corelation coefficients of (MgO, $K_2O$) and (MnO, CuO) showed above 0.90. The concentrations of thirteen trace elements apparently differentiated from colorless, greenish blue and dark blue glasses. We found that thirteen trace elements were very important indices for studying raw material of glass and the origin of glass making. Colorless glass : The specific gravity is $1.50{\pm}0.04$. Circle or oval circle pores are observed with regular direction in internal zone and the longest one is about 0.35 mm. The raw material of sodium must be the plant ash because sodium glasses contain HCLA(High CaO, Low $Al_2O_3$) and HMK(high MgO, high $K_2O$) and suggested to Sasanian glass. The total amount of coloring agent of colorless glass is below 1 % which is too small to attribute to the color. Greenish blue glass : The specific gravity is $1.58{\pm}0.04$. The fine pores which are 0.1~0.2mm are dispersed in internal zone. Sodium glasses are distributed to HCLA and HMK. Therefore the greenish blue glass also have used plant ash for raw material of sodium with the same as colorless glass. It was also suggested to the glass of Sasanian. The total amount of coloring agent of greenish blue glass is about 4% under the influence of working MnO, $Fe_2O_3$ and CuO. Dark purple blue glass : The specific gravity is $1.48{\pm}0.19$. There are rarely pores in internal zone. They are distributed to HCLA and LMK(Low MgO, Low $K_2O$) and suggested to Roman glass. The raw material of sodium is estimated to natron. The total amount of coloring agents of greenish blue is about 3% by $Fe_2O_3$ and CuO. These studies for western asia glass shards from South Mound of Hwangnamdaechong could be used in the future as the standard data which could be compared with those of other several graves in Korea and dispersed in foreign areas.

De-soda Process Using Silica for Fabrication of Low Soda Alumina Powder

  • Park, Sang-Chun;Kim, Dae-Woong;Heo, In-Woong;Lee, Sang-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.3
    • /
    • pp.192-196
    • /
    • 2015
  • Low soda alumina powder was fabricated using silica (${\alpha}$-quartz) as an agent for removing soda components in the alumina. Quartz powder 2 mm in size was added to aluminum hydroxide obtained through the Bayer process, and then the mixture was heated at various temperatures. Finally, the heat-treated powders were sieved for classification. In this study, the effects of the quartz amount and heating temperature on the mechanism of removing soda were examined. A minimum soda content of 0.005 wt% was observed at the conditions of 15 wt% quartz (based on $Al(OH)_3$ amount) heat-treated at $1600^{\circ}C$ for 8 h. The soda components, such as $Na_2O$, NaOH, and $Na_2CO_3$, in alumina were ionized and activated at high temperature, and this facilitated the reaction with quartz silica and alumina producing nepheline. The advantages of using quartz include low iron content and low cost in comparison with the conventional de-soda process using chamotte, another silicate mineral.

Magnetic Field Dependent Characteristics of Al-doped ZnO by High Power Impulse Magnetron Sputtering (HIPIMS) (자장 구조 변화에 따른 High Power Impulse Magnetron Sputtering (HIPIMS)에서 Al-doped ZnO 박막 증착 특성)

  • Park, Dong-Hee;Yang, Jeong-Do;Choi, Ji-Won;Son, Young-Jin;Choi, Won-Kook
    • Korean Journal of Materials Research
    • /
    • v.20 no.12
    • /
    • pp.629-635
    • /
    • 2010
  • Abstract In this study characteristics of Al-doped ZnO thin film by HIPIMS (High power impulse sputtering) are discussed. Deposition speed of HIPIMS with conventional balanced magnetic field is measured at about 3 nm/min, which is 30% of that of conventional RF sputtering process with the same working pressure. To generate additional magnetic flux and increase sputtering speed, electromagnetic coil is mounted at the back side of target. Under unbalanced magnetic flux from electromagnet with 1.5A coil current, deposition speed of AZO thin film is increased from 3 nm/min to 4.4 nm/min. This new value originates from the decline of particles near target surface due to the local magnetic flux going toward substrate from electromagnet. AZO film sputtered by HIPIMS process shows very smooth and dense film surface for which surface roughness is measured from 0.4 nm to 1 nm. There are no voids or defects in morphology of AZO films with varying of magnetic field. When coil current is increased from 0A to 1A, transmittance of AZO thin film decreases from 80% to 77%. Specific resistance is measured at about $2.9{\times}10-2\Omega{\cdot}cm$. AZO film shows C-axis oriented structure and its grain size is calculated at about 5.3 nm, which is lower than grain size in conventional sputtering.

The Recycling of Inorganic Industrial Waste in Cement Industry (시멘트산업에서 무기질 산업 폐·부산물의 재활용)

  • Kang, S.K.;Nam, K.U.;Seo, H.N.;Kim, N.J.;Min, K.S.;Chung, H.S.;Oh, H.K.
    • Clean Technology
    • /
    • v.6 no.1
    • /
    • pp.61-69
    • /
    • 2000
  • In this study, generation process and properties of inorganic industrial waste which can be used in cement industry were investigated. The scheme of recycling to use the selected waste as raw materials, mineralizer and flux, admixture and raw materials for special cement was decided and then various experiments were carried out. The experimental results were as follows ; In the use of industrial waste as raw materials, ferrous materials could be substituted by Cu-slag, Zn-slag, electric arc furnace or convertor furnace slag etc., and a siliceous material could be substituted by sand from cast-iron industry. By-products from sugar or fertilizer industry, which has $CaF_2$ as the main component, and jarosite from Zn refinery enabled clinker phases to be formed at lower temperature by $100{\sim}150^{\circ}C$. Adding Cu slag and STS sludge in proper proportion to cement improved properties of cement. Fly ash and limestone powder as admixture had the same effect on cement. As a raw material for special cement, aluminium waste sludge could be used in making ultra early strength cement, which had the compressive strength of $300kg/cm^2$ within 2hours. And two different ashes from municipal incinerator could be raw materials of the cement which was mainly composed of $C_3S$ and $C_{11}A_7{\cdot}CaCl_2$ as clinker phases.

  • PDF