• Title/Summary/Keyword: $CeO_2$addition

Search Result 182, Processing Time 0.026 seconds

Effects of Co-doping on Densification of Gd-doped CeO2 Ceramics and Adhesion Characteristics on a Yttrium Stabilized Zirconia Substrate

  • Lee, Ho-Young;Kang, Bo-Kyung;Lee, Ho-Chang;Heo, Young-Woo;Kim, Jeong-Joo;Lee, Joon-Hyung
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.6
    • /
    • pp.576-580
    • /
    • 2018
  • In this study, a small amount of CoO was added to commercial Gd-doped $CeO_2$ (GDC) powder. The CoO addition greatly enhanced sinterability at low temperatures, i.e., more than 98% of relative density was achieved at $1,000^{\circ}C$. When GDC/8YSZ (8 mol% yttrium stabilized zirconia) bilayers were sintered, Co-doped GDC showed excellent adhesion to the YSZ electrolyte. Transmission electron microscope (TEM) analysis showed that there were no traces of liquid films at the grain boundaries of GDC, whereas liquid films were observed in the Co-doped GDC sample. Because liquid films facilitate particle rearrangement and migration during sintering, mechanical stresses at the interface of a bilayer, which are developed based on different densification rates between the layers, might be reduced. In spite of $Co^{2+}$ doping in GDC, the electrical conductivity was not significantly changed, relative to GDC.

Large Magnetic Entropy Change in La0.55Ce0.2Ca0.25MnO3 Perovskite

  • Anwar, M.S.;Kumar, Shalendra;Ahmed, Faheem;Arshi, Nishat;Kim, G.W.;Lee, C.G.;Koo, Bon-Heun
    • Journal of Magnetics
    • /
    • v.16 no.4
    • /
    • pp.457-460
    • /
    • 2011
  • In this paper, magnetic property and magnetocaloric effect (MCE) in perovskite manganites of the type $La_{(0.75-X)}Ce_XCa_{0.25}MnO_3$ (x = 0.0, 0.2, 0.3 and 0.5) synthesized by using the standard solid state reaction method have been reported. From the magnetic measurements as a function of temperature and applied magnetic field, we have observed that the Curie temperature ($T_C$) of the prepared samples strongly dependent on Ce content and was found to be 255, 213 and 150 K for x = 0.0, 0.2 and 0.3, respectively. A large magnetocaloric effect in vicinity of $T_C$ has been observed with a maximum magnetic entropy change (${\mid}{\Delta}S_M{\mid}_{max}$) of 3.31 and 6.40 J/kgK at 1.5 and 4 T, respectively, for $La_{0.55}Ce_{0.2}Ca_{0.25}MnO_3$. In addition, relative cooling power (RCP) of the sample under the magnetic field variation of 1.5 T reaches 59 J/kg. These results suggest that $La_{0.55}Ce_{0.2}Ca_{0.25}MnO_3$ compound could be a suitable candidate as working substance in magnetic refrigeration at 213 K.

Effect of Additives on Catalytic Activity in Thermal Catalytic De-NOx Process (Thermal catalytic de-NOX 공정에서 첨가제가 촉매의 활성에 미치는 영향에 관한 연구)

  • 이진구;김태원;최재순;김정호;이재수;장경욱;박해경
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.3
    • /
    • pp.249-255
    • /
    • 1999
  • We sdudied effect of additives on catalytic activity in thermal catalytic de-NOx process which was composed of thermal reduction, catalytic reduction and catalytic oxidation stage. Pd-Pt/${\gamma}$-$Al_2O_3$ catalysts with the addition of transition metals(Co, Cu, Fe, Ni, W, Zn, Zr) and rare earth metals(Ce, Sr) were prepared by the conventional washcoating method. Those catalysts were characterized by CO pulse chemisorption, ICP, $N_2$ adsorption, SEM and XRD. The effect of catalyst additives on NOx removal for diesel emission was studied in thermal catalytic de-NOx process at reduction temperature(350~50$0^{\circ}C$), space velocity(5,000~20,000 $hr^{-1}$) and the engine load(0~120kW). The concentraton of CO, $CO_2$, NO and $NO_2$ in the exhaust gas increased with the engine load. On the other hand the concentration of $O_2$ decreased. The de-NOx activityof all prepared catalysts increased with respect to high CO and low $O_2$ level in the thermal reduction stage of the process. Insertion of Ce to Pt-Pd/${\gamma}$-$Al_2O_3$ catalyst showed the best activity of all the catalysts under these experimental conditions. De-NOx catalysts are effective to remove CO in addition to NOx in the catalytic reduction stage.

  • PDF

SCC Inhibitors for SG Tube Materials in Nuclear Power Plants

  • Kim, Kyung-Mo;Lee, Eun-Hee;Kim, Uh-Chul
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.585-586
    • /
    • 2006
  • Several chemicals were studied to suppress the damage due to stress corrosion cracking (SCC) of steam generator (SG) tubes in nuclear power plants. The effects on the SCC of the compounds, $TiO_2$, TyzorLA and $CeB_6$, were tested for several types of SG tubing materials. The test with the addition of $TiO_2$ and $CeB_6$ showed an effect in decreasing the SCC for the SG tubing material. However, $CeB_6$ caused some more SCC for Alloy 800. The penetration property into a crevice of the inhibitors was investigated by using Alloy 600 specimens with different gap.

  • PDF

The Effect of Promoter on the SO2-resistance of Fe/zeolite Catalysts for Selective Catalytic Reduction of NO with Ammonia (NO의 암모니아 선택적 촉매환원반응을 위한 철 제올라이트 촉매의 내황성에 미치는 조촉매 효과)

  • Ha, Ho-Jung;Choi, Joon-Hwan;Han, Jong-Dae
    • Clean Technology
    • /
    • v.21 no.3
    • /
    • pp.153-163
    • /
    • 2015
  • The effects of H2O and residue SO2 in flue gases on the activity of the Fe/zeolite catalysts for low-temperature NH3-SCR of NO were investigated. And the addition effect of Mn, Zr and Ce to Fe/zeolite for low-temperature NH3-SCR of NO in the presence of H2O and SO2 was investigated. Fe/zeolite catalysts were prepared by liquid ion exchange and promoted Fe/zeolite catatysts were prepared by liquid ion exchange and doping of Mn, Zr and Ce by incipient wetness impregnation. Zeolite NH4-BEA and NH4-ZSM-5 were used to adapt the SCR technology for mobile diesel engines. The catalysts were characterized by BET, X-ray diffraction (XRD), SEM/EDS, TEM/EDS. The NO conversion at 200 ℃ over Fe/BEA decreased from 77% to 47% owing to the presence of 5% H2O and 100 ppm SO2 in the flue gas. The Mn promoted MnFe/BEA catalyst exhibited NO conversion higher than 53% at 200 ℃ and superior to that of Fe/BEA in the presence of H2O and SO2. The addition of Mn increased the Fe dispersion and prevented Fe aggregation. The promoting effect of Mn was higher than Zr and Ce. Fe/BEA catalyst exhibited good activity in comparison with Fe/ZSM-5 catalyst at low temperature below 250 ℃.

The Piezoelectric Characteristics of PZ-PT-PMS Ceramics for Large Displacement Application (고진동레벨에서의 PZ-PT-PMS계 세라믹의 압전특성)

  • 이동준;권순석;신달우;정수현;임기조
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.250-253
    • /
    • 1997
  • Generally, Piezoelectric ceramics based lead-zirconate-titanate(PZT) system are well known to use in high power devices. In this pacer. Pb(Mn$\sub$1/3//Sb$\sub$2/3/)O$_3$(PMS) ceramics which have been shown to be adaptable for a high power usage is introduced. The stability of piezoelectric properties in PZ-PT-PMS solid solution system such as piezoelectric constants. electromechanical coupling coefficient and mechanical quality factor is discussed by the addition effect of CeO$_2$ as a additive. The CeO$_2$ ratio ranges from 0 to 2 wt%. The resonant and anti-resonant frequencies. mechanical quality factor, and force factor are also measured as a function of vibration velocity

  • PDF

EFFECT OF $CEO_2$ ADDITION IN GLASS COMPOSITION ON THE STRENGTH OF ALUMINA-GLASS COMPOSITES (알루미나-유리 복합체용 글래스의 조성에서 $CeO_2$의 함량변화가 강도에 미치는 영향)

  • Lee, Hwa-Jin;Song, Kwang-Yeob;Kang, Jeong-Kil
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.5
    • /
    • pp.595-605
    • /
    • 2000
  • Dental ceramics have good aesthetics, biocompatibility, low thermal conductivity, abrasion resistance, and color stability. However poor resistance to fracture and shrinkage during firing process have been limiting factors in their use, particularly in multiunit ceramic restorations. A new method for making all-ceramic crowns that have high strength and low processing shrinkage has been developed and is referred to as the Vita In-Ceram method. This study was performed to investigate the effect of $CeO_2$ addition in borosilicate glasses on the strength of alumina-glass composites. Porous alumina compacts were prepared by slip casting and sintered at $1,100^{\circ}C$ for 2 hours. Dense composites were made by infiltration of molten glass into partially sintered alumina at $1,140^{\circ}C$ for 4 hours. Specimens were polished sequentially from #800 to #2000 diamond disk. and the final surface finishing on the tensile side was received an additional polishing sequence through $1{\mu}m$ diamond paste. Biaxial flexure test was conducted by using ball-on-three-ball method at a crosshead speed of 0.5mm/min. To examine the microstructural aspect of crack propagation in the alumina-glass composites, Vickers-produced indentation crack was made on the tensile surface at a load of 98.0 N and dwell time of 15 sec, and the radial crack patterns were examined by an optical microscope and a scanning electron microscope. The results obtained were summarized as follows; 1. The porosity rates of partially sintered alumina decreased with the rising of firing temperature. 2. The maximum biaxial flexure strength of 423.5MPa in alumina-glass composites was obtained with an addition of 3 mol% $CeO_2$ in glass composition and strength values showed the aspect of decrease with the increase of $CeO_2$ content. 3 The biaxial flexure strength values of alumina-glass composites were decreased with rising the firing temperature. 4. Observation of the fracture surfaces of alumina-glass composites indicated that the enhancement of strength in alumina-glass composites was due to the frictional or geometrical inter-locking of rough fracture surfaces and ligamentary bridging by intact islands of materials left behind the fracture front.

  • PDF

Effect of Ce Addition on Catalytic Activity of Cu/Mn Catalysts for Water Gas Shift Reaction (수성가스전이반응(Water Gas Shift Reaction)을 위한 Ce 첨가에 따른 Cu/Mn 촉매의 활성 연구)

  • PARK, JI HYE;IM, HYO BEEN;HWANG, RA HYUN;BAEK, JEONG HUN;KOO, KEE YOUNG;YI, KWANG BOK
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Cu/Mn/Ce catalysts for water gas shift (WGS) reaction were synthesized by urea-nitrate combustion method with the fixed molar ratio of Cu/Mn as 1:4 and 1:1 with the doping concentration of Ce from 0.3 to 0.8 mol%. The prepared catalysts were characterized with SEM, BET, XRD, XPS, $H_2$-TPR, $CO_2$ TPD, $N_2O$ chemisorption analysis. The catalytic activity tests were carried out at a GHSV of $28,000h^{-1}$ and a temperature range of 200 to $400^{\circ}C$. The Cu/Mn(CM) catalysts formed Cu-Mn mixed oxide of spinel structure ($Cu_{1.5}Mn_{1.5}O_4$) and manganese oxides ($MnO_x$). However, when a small amount of Ce was doped, the growth of $Cu_{1.5}Mn_{1.5}O_4$ was inhibited and the degree of Cu dispersion were increased. Also, the doping of Ce on the CM catalyst reduced the reduction temperature and the base site to induce the active site of the catalyst to be exposed on the catalyst surface. From the XPS analysis, it was confirmed that maintaining the oxidation state of Cu appropriately was a main factor in the WGS reaction. Consequently, Ce as support and dopant in the water gas shift reaction catalysts exhibited the enhanced catalytic activities on CM catalysts. We found that proper amount of Ce by preparing catalysts with different Cu/Mn ratios.

Effect of Nickel Addition on Sintering Behavior and Electrical Conductivity of BaCe0.35Zr0.5Y0.15O3-δ

  • An, Hyegsoon;Shin, Dongwook;Ji, Ho-Il
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.1
    • /
    • pp.91-97
    • /
    • 2019
  • The effect of different Ni-containing additives on the sintering behavior and electric conductivity of the proton conducting electrolyte $BaCe_{0.35}Zr_{0.5}Y_{0.15}O_{3-{\delta}}$ (BCZY5) was investigated. Ni-doped, NiO-added, and $BaY_2NiO_5$(BYN)-added (all 4 mol%) BCZY5 samples were prepared by the solid state synthesis method and sintered at $1400^{\circ}C$ for 6 h. Among the three samples, the onset of densification was observed at the lowest temperature for NiO-added BCZY5, which is attributed to the formation of an intermediate phase at a low melting temperature. The BYN-added sample, where no consumption of the constitutional elements of the electrolyte was expected during sintering, exhibited the highest electrical conductivity whereas the doped sample had the lowest conductivity. The electrical conductivities at $500^{\circ}C$ under humid argon atmosphere were measured to be 2.0, 4.8, and $6.2mS{\cdot}cm^{-1}$ for Ni-doped and NiO- and BYN-added samples, respectively.

Optical Properties of the Eu2+ Doped Li2SrSiO4-αNα (Li2SrSiO4-αNα에 첨가된 Eu2+의 광학적 특성)

  • Namkhai, Purevdulam;Kim, Taeyoung;Woo, Hyun-Joo;Jang, Kiwan;Jeong, Jung Hyun
    • New Physics: Sae Mulli
    • /
    • v.68 no.11
    • /
    • pp.1196-1202
    • /
    • 2018
  • $Li_2Sr_{1-x}Eu_xSiO_{4-{\alpha}}N_{\alpha}$ ($Li_2SrSiO_{4-{\alpha}}N_{\alpha}:Eu^{2+}$) phosphors were synthesized by using a solid state reaction (SSR) method with submicron $Si_3N_4$ and nano $Si_3N_4$ powders as the sources of Si and N, and the optical properties of those phosphors were studied. The studied phosphors showed efficient excitation characteristics over the broad range from 230 to 530 nm. Also, They showed broad emission spectra covering a range from 500 to 700 nm, with a peak at 568 nm, which was shifted longer wavelength by 18 nm as compared with that of commercial $YAG:Ce^{3+}$. Combined with a 450 nm blue LED chip, the results support the application of the $Li_2SrSiO_{4-{\alpha}}N_{\alpha}:Eu^{2+}$ phosphor as a luminescent material for a white-light source thaat is warmer than the commercial $YAG:Ce^{3+}$ white-light source. In addition, the $Li_2SrSiO_{4-{\alpha}}N_{\alpha}$ phosphors prepared from a submicron $Si_3N_4$ powder was found to emit a previously unreported self-activated luminescence in $Li_2SrSiO_{4-{\alpha}}N_{\alpha}$.