• Title/Summary/Keyword: $Cd^{2+}$ tolerant strain

Search Result 5, Processing Time 0.018 seconds

BOD Determination by Heavy Metal Tolerant Candida sp. LSY2 (Candida sp. LSY2 중금속 내성주를 이용한 BOD 분석)

  • 김말남;이선영
    • Korean Journal of Environmental Biology
    • /
    • v.17 no.4
    • /
    • pp.415-420
    • /
    • 1999
  • A biochemical oxygen demand (BOD) sensor loaded with Candida sp. was designed and constructed for the quick measurement of the concentrations of biologically assimilable organic substances dissolved in water. The sensitivity of the sensor was higher for glucose, acetic acid, aspartic acid and glutamic acid than that for lactose, sucrose and lactic acid. The sensitivities of BOD sensors loaded with $Zn^{2+}$ tolerant and intact strains were almost identical while the sensitivity of sensor loaded with Cd$^{2+}$ tolerant strain was considerably lower. The sensitivities of the sensors loaded with intact or $Zn^{2+}$ tolerant strains did not change with the concentration of $Cd^{2+}$ in the aqueous solution while the sensitivity of the sensor loaded with $Cd^{2+}$ tolerant strain decreased slightly. The sensitivities of the sensors loaded with intact strain, $Zn^{2+}$ or $Cd^{2+}$ tolerant strains were not affected by the concentration of $Zn^{2+}$ in the aqueous solution.n.

  • PDF

Selection and Isolation of a Mutant Yeast Strain Tolerant to Multiple Targeted Heavy Metals

  • Lee, Sangman
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.2
    • /
    • pp.129-133
    • /
    • 2014
  • BACKGROUND: This study was performed for selecting yeast mutants with a high tolerance for targeted metals, and determining whether yeasts strains tolerant to multiple heavy metals could be induced by sequential adaptations. METHODS AND RESULTS: A mutant yeast strain tolerant to the heavy metals cadmium (Cd), copper (Cu), nickel (Ni), and zinc (Zn) was selected by sequential elevated exposures to each metal with intermittent mutant isolation steps. A Cd-tolerant mutant was isolated by growing yeast cells in media containing $CdCl_2$ concentrations that were gradually increased to 1 mM. Then the Cd-tolerant mutant was gradually exposed to increasing levels of $CuCl_2$ in growth media until a concentration of 7 mM was reached, thus generating a strain tolerant to both Cd and Cu. In the subsequent steps, this mutant was exposed to $NiCl_2$ (up to 8 mM), and a resultant isolate was further exposed to $ZnCl_2$ (up to 60 mM), allowing the derivation of a yeast mutant that was simultaneously tolerant to Cd, Cu, Ni, and Zn. CONCLUSION: This method of inducing tolerance to multiple targeted heavy metals in yeast will be useful in the bioremediation of heavy metals.

Microbiological Characteristics of Heavy Metal Ion-Tolerant Microorganisms. (중금속 내성균주의 미생물학적 성질)

  • 유대식
    • Microbiology and Biotechnology Letters
    • /
    • v.7 no.4
    • /
    • pp.183-190
    • /
    • 1979
  • Cadmium ion-tolerant microorganisms were isolated from the sludge and soil of a cadmium ion-polluted area, a zinc mineralized area, in Kyung Sang Pook Do, Korea. A strain, C-7, which showed tile highest tolerance to cadmium ion was selected by screening from 18 cadmium tolerant microorganisms. By the taxonomical characteristics of this strain, it was identified as a variant of Erwinia sp.. The strain grew in a medium cadmium ion up to a concentration of 2, 800 $\mu\textrm{g}$/ml and the maximum intercellular accumulation of Cd$^{2+}$ was measured to be 28.60 mg/g dried cells (57.2%) during incubation in medium containing 50 $\mu\textrm{g}$/ml under aerobic condition at 28$^{\circ}C$ for 24 hour.r.

  • PDF

Sensitivity of BOD Sensor with Heavy Metal Tolerant Serratia marcescens LSY4 (Serratia marcescens LSY4 중금속 내성주를 이용한 BOD센서의 감응도)

  • Kim Mal-Nam;Lee Sun-Young
    • Korean Journal of Environmental Biology
    • /
    • v.22 no.3
    • /
    • pp.394-399
    • /
    • 2004
  • A BOD sensor was prepared with S. marcescens LSY4 and was applied for measurement of BOD values of a solution containing the standard organic pollutants. The sensor sensitivity was nearly independent of the culture time in the range of 9-16 hours. It was also affected little by the cell mass in the range of 0.22-0.75 mg $cm^{-2}$. A cyclic change in the solution pH in the range of 4-9 was accompanied by a reversible variation in the sensor sensitivity. However, the reversibility was lost when the solution pH became more acidic or more basic. Heavy metal ions lowered the sensor sensitivity, which took place more precipitously in the presence of $Cu^{2+}$ and $Ag^+$ rather than in the presence of $Zn^{2+}$ and $Cd^{2+}$. The reduction of the sensor sensitivity was significantly attenuated by loading heavy metal ion tolerance induced strain. The $Cu^{2+}$tolerance induced strain was more efficient for the attenuation than $Zn^{2+}$ and $Cd^{2+}$ tolerance induced strain.

Isolation of Cadmium-Tolerant Bacteria and Characterization of Cadmium Accumulation into the Bacteria Cell (카드뮴 내성균(耐性菌)의 분리(分離), 동정(同定)및 균체내(菌體內) 카드뮴 축적(蓄積) 특성(特性))

  • Cho, Ju-Sik;Han, Mun-Gyu;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.11 no.1
    • /
    • pp.77-85
    • /
    • 1992
  • Of the cadmium-tolerant 162 bacterial strains isolated from soils, river waters or active sludges of waste-water disposal plants in the Gyeongnam province a strain C1, which showed considerably higher growth rate in the agar plate containing 2000 ppm than any other strains isolated, was identified as a Pseudomonas putida or its similar strain when analyzed by taxonomical characteristics. Optimum pH and temperature for the growth of the P, putida were 7.0 and $30^{\circ}C$, respectively. This strain was resistant to antibiotics(ampicillin, chloramphenicol and streptomycin), and heavy metals(lithium, cupper, lead and zinc). This strain utilized salicylate, naphthalene or xylene as a sole carbon source. The rate of cadmium accumulation in P. putida cell was enhanced at low concentration of Cd in the growth media. The maximum cadmium absorption by this strain grown in 1 and l0ppm of Cd was respectively 78% and 60% 24 hrs after culture, but in 100 ppm Cd, 40% 48 hrs after culture. Addition of a non-ionic surfactant Triton X-100(0.1%) to the medium enhanced the accumulation of cadmium in the P. putida up to approximately 37%.

  • PDF