• Title/Summary/Keyword: $Cac_2$

Search Result 620, Processing Time 0.026 seconds

Classical shell theory for instability analysis of concrete pipes conveying nanofluid

  • Keikha, Reza;Heidari, Ali;Hosseinabadi, Hamidreza;Haghighi, Mohammad Salkhordeh
    • Computers and Concrete
    • /
    • v.22 no.2
    • /
    • pp.161-166
    • /
    • 2018
  • This paper deals with the instability analysis of concrete pipes conveying viscous fluid-nanoparticle mixture. The fluid is mixed by $AL_2O_3$ nanoparticles where the effective material properties of fluid are obtained by mixture rule. The applied force by the internal fluid is calculated by Navier-Stokes equation. The structure is simulated by classical cylindrical shell theory and using energy method and Hamilton's principle, the motion equations are derived. Based on Navier method, the critical fluid velocity of the structure is calculated and the effects of different parameters such as fluid velocity, volume percent of nanoparticle in fluid and geometrical parameters of the pipe are considered. The results present that with increasing the volume percent of nanoparticle in fluid, the critical fluid velocity increase.

Minimizing environmental impact from optimized sizing of reinforced concrete elements

  • Santoro, Jair F.;Kripka, Moacir
    • Computers and Concrete
    • /
    • v.25 no.2
    • /
    • pp.111-118
    • /
    • 2020
  • The construction field must always explore sustainable ways of using its raw materials. Studying the environmental impact generated by reinforced concrete raw materials during their production and transportation can contribute to reducing this impact. This paper initially presents the carbon dioxide emissions from reinforced concrete raw materials, quantified per kilo of raw material and per cubic meter of concrete with different characteristic strengths, for southern Brazil. Subsequently, reinforced concrete elements were optimized to minimize their environmental impact and cost. It was observed that lower values of carbon dioxide emissions and cost savings are generated for less resistant concrete when the structural element is a beam, and that reductions in the cross section dimensions of the beams, sized based on the use of higher strength concrete, may not compensate for the increased environmental impact and costs. For the columns, the behavior differed, presenting lower values of carbon dioxide emissions and costs for higher concrete strengths. The proposed methodology, as well as the results obtained, can be used to support structural projects that have less impact on the environment.

Interface slip of post-tensioned concrete beams with stage construction: Experimental and FE study

  • Low, Hin Foo;Kong, Sih Ying;Kong, Daniel;Paul, Suvash Chandra
    • Computers and Concrete
    • /
    • v.24 no.2
    • /
    • pp.173-183
    • /
    • 2019
  • This study presents experimental and numerical results of prestressed concrete composite beams with different casting and stressing sequence. The beams were tested under three-point bending and it was found that prestressed concrete composite beams could not achieve monolith behavior due to interface slippage between two layers. The initial stress distribution due to different construction sequence has little effect on the maximum load of composite beams. The multi-step FE analyses could simulate different casting and stressing sequence thus correctly capturing the initial stress distribution induced by staged construction. Three contact algorithms were considered for interaction between concrete layers in the FE models namely tie constraint, cohesive contact and surface-to-surface contact. It was found that both cohesive contact and surface-to-surface contact could simulate the interface slip even though each algorithm considers different shear transfer mechanism. The use of surface-to-surface contact for beams with more than 2 layers of concrete is not recommended as it underestimates the maximum load in this study.

Pozzolanicity identification in mortars by computational analysis of micrographs

  • Filho, Rafael G.D. Molin;Rosso, Jaciele M.;Volnistem, Eduardo A.;Vanderlei, Romel D.;Longhi, Daniel A.;de Souza, Rodrigo C.T.;Paraiso, Paulo R.;Jorge, Luiz M. de M.
    • Computers and Concrete
    • /
    • v.27 no.2
    • /
    • pp.175-184
    • /
    • 2021
  • The incorporation of pozzolans to Portland cement pastes adds value in the development of new materials for the construction industry. This study presents a new computational method, complementary to the pozzolanic identification by compressive strength at 28 days method, for supporting the validation of pozzolanic mortars for non-structural purposes. An algorithm capable of classifying the pixels of micrographs of specimens fragments was developed. Therefore, comparative analyses were generated from fractional Gaussian representations in four intervals of the same amplitude that indicated the predispositions to form larger void indices (intervals 1 and 2). The results showed that the computational method indicators are in accordance with the physical and chemical indicators.

Intelligent modeling to investigate the stability of a two-dimensional functionally graded porosity-dependent nanobeam

  • Zhou, Jinxuan;Moradi, Zohre;Safa, Maryam;Khadimallah, Mohamed Amine
    • Computers and Concrete
    • /
    • v.30 no.2
    • /
    • pp.85-97
    • /
    • 2022
  • Using a combination of nonlocal Eringen as well as classical beam theories, this research explores the thermal buckling of a bidirectional functionally graded nanobeam. The formulations of the presented problem are acquired by means on conserved energy as well as nonlocal theory. The results are obtained via generalized differential quadrature method (GDQM). The mechanical properties of the generated material vary in both axial and lateral directions, two-dimensional functionally graded material (2D-FGM). In nanostructures, porosity gaps are seen as a flaw. Finally, the information gained is used to the creation of small-scale sensors, providing an outstanding overview of nanostructure production history.

A Simple Method for Determining Residual p-arsanilic Acid in Aquatic Products using EDTA-Assisted Solvent Extraction and LC-MRM

  • Min Kyeong Kwon;Ye Bin Shin;Young Min Kim;Jin Hwan Kim;Ji Seong Kim;Yong Seok Choi
    • Mass Spectrometry Letters
    • /
    • v.14 no.2
    • /
    • pp.36-41
    • /
    • 2023
  • A simple method was developed to determine residual p-arsanilic acid (ASA), an organo-arsenic compound used as a feed additive, in aquatic products (eel, halibut, and shrimp) using EDTA-assisted solvent extraction and LC-MRM. The method was successfully validated in terms of specificity, linearity (coefficient of determination ≥ 0.995), accuracy (recovery or R, 72.72-78.73%), precision (the relative standard deviation of R, 2.08-6.98%), and sensitivity (the lower limit of quantitation, 5 ppb) according to CODEX guidelines (CAC-GL 71-2009). The use of EDTA in the extraction solvent and water with a suitable pH modifier as the reconstitution solvent may be the key factors for successful results. This is the first method that can be used for monitoring residual ASA in aquatic products using LC-MRM and could contribute to establishing a better aquatic product safety management system.

Intelligent big data analysis and computational modelling for the stability response of the NEMS

  • Juncheng Fan;Qinyang Li;Sami Muhsen;H. Elhosiny Ali
    • Computers and Concrete
    • /
    • v.31 no.2
    • /
    • pp.139-149
    • /
    • 2023
  • This article investigates the statically analysis regarding the thermal buckling behavior of a nonuniform small-scale nanobeam made of functionally graded material based on classic beam theories along with the nonlocal Eringen elasticity. The material distribution of functionally graded structures is composed of temperature-dependent ceramic and metal phases in axial and thickness directions, called two-dimensional functionally graded (2D-FG). The partial differential (PD) formulations and end conditions are extracted by using to the conservation energy method. The porosity voids are assumed in the nonuniform functionally graded (FG) structure. The thermal loads are in the axial direction of the beam. The extracted nonlocal PD equations are also solved by employing generalized differential quadrature method (GDQM). Last but not least, the information acquired is used to produce miniature sensors, providing a unique perspective on the growth of nanoelectromechanical systems (NEMS).

Association of Coronary Artery Calcium Scores with Cadiovascular Disease Risk Factors in an Asymptomatic Adults (무증상 성인에서 심혈관질환 위험요소와 관상동맥 석회 수치와의 관계)

  • Moon, Il-Bong;Sohn, Seok-Joon
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.7
    • /
    • pp.268-275
    • /
    • 2010
  • Coronary artery calcium scores(CACS) has been used as surrogate marker for coronary atherosclerosis. We evaluated 1042 patients who visited the Department of Health Promotion Center in Chonnam National University Hospital and had a test of the CACS from January 2006, to December 2008. This study was performed to evaluate the relation of the CACS with Cadiovascular disease(CVD) risk factors and FRS. CACS and FRS was a significant difference between the group whose calcium score was 0 and the group whose calcium scores were 1 in case of men 2.38(95% CI, 1.83-3.11), women 2.12(95% CI, 1.03-4.35). The age-and sex-adjusted odds ratios for predictor of CVD risk factors to women with age was 1.10(95% CI, 1.06-1.15), HDL-cholesterol was 2.38(95% CI, 1.04-5.44), Fasting plasma glucose was 2.89(95% CI, 1.16-7.21), to men with age was 1.11(95% CI, 1.08-1.14), LDL-cholesterol was 2.12(95% CI, 1.28-3.50), gamma-GTP was 1.73(95% CI, 1.17-2.55), Diabetes mellitus medication was 3.92(95% CI, 1.73-8.89). The CACS seems to be a siginificant factor to evaluate the CVD risk factors.

Analysis of Genetic Diversity in Soybean Varieties Using RAPD Markers (사료작물로 이용이 가능한 한국 재배콩의 RAPD 표지인자에 의한 유전적 다양성 분석)

  • Lee, Sung-Kyu;Kim, Bum-Jun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.18 no.4
    • /
    • pp.277-284
    • /
    • 1998
  • Random amplified polymorphic DNA (RAPD) analysis was used to detect the genetic diversity of soybean (Glycine max (L.) Merr.) varieties and field bean (Glycine soza Sieb. and Zucc.) Five soybean varieties and one field bean were analysed with random primers using the polymerase chain reaction (PCR). Nine primers of a total twenty random primer were selected to amplify DNA segments. A total of 74 PCR products were amplified and 67.6% of which were polymorphic. The size of DNA molecule is ranged 0.13~2.0Kb and typically generated four to eight major bands. Specific genetic marker were revealed in primer sequence 5'-CAG GCC CIT C-3', 5'-TGC TCT GCC C-3' and 5'-GTC CAC ACG G-3', respectively. Genetic similarity between each of the varieties were calculated from the pair-wise comparisons of amplification products and a dendrogram was constructed by an unweighted pair-group method with arithmethical means (UPGMA). The results indicate that intervarietal relationships of soybean have a narrow genetic base and between the varieties, Hwanggum-kong and Seckryang-bootkong is more closely related than the rest of varieties, and field bean is related quite distant.

  • PDF

Variables affecting strain sensing function in cementitious composites with carbon fibers

  • Baeza, F.J.;Zornoza, E.;Andion, L.G.;Ivorra, S.;Garces, P.
    • Computers and Concrete
    • /
    • v.8 no.2
    • /
    • pp.229-241
    • /
    • 2011
  • In this work, cement paste samples with 1% (by cement mass) of a conductive carbon fiber admixture have been studied under uniaxial compression. Three different arrangements were used to measure the resistivity of the samples. According to the results obtained, the resistance should be measured using the four wire method in order to obtain good sensitivity and repeatability. The effect of the load value and the load rate on the fractional change of the volume resistivity has been determined. It has been observed that the gage factor (fractional change in resistance respect to strain) increases when the maximum load is increased, and the loading rate does not affect significantly this parameter. The effect of the sample ambient humidity on the material piezoresistivity has also been studied, showing that the response of the composite is highly affected by this parameter.