• Title/Summary/Keyword: $Cac_2$

Search Result 620, Processing Time 0.025 seconds

Damping determination of FRP-confined reinforced concrete columns

  • Li, Xiaoran;Wang, Yuanfeng;Su, Li
    • Computers and Concrete
    • /
    • v.14 no.2
    • /
    • pp.163-174
    • /
    • 2014
  • Damping as a material property plays an important role in decreasing dynamic response of structures. However, very little is known about the evaluation and application of the actual damping of Fiber Reinforced Polymer Confined Reinforced Concrete (FRP-C RC) material which is widely adopted in civil engineering at present. This paper first proposes a stress-dependent damping model for FRP-C RC material using a validated Finite Element Model (FEM), then based on this damping-stress relation, an iterative scheme is developed for the computations of the non-linear damping and dynamic response of FRP-C RC columns at any given harmonic exciting frequency. Numerical results show that at resonance, a considerable increase of the loss factor of the FRP-C RC columns effectively reduces the dynamic response of the columns, and the columns with lower concrete strength, FRP volume ratio and axial compression ratio or higher longitudinal reinforcement ratio have stronger damping values, and can relatively reduce the resonant response.

Pozzolanic reaction of the waste glass sludge incorporating precipitation additives

  • You, Ilhwan;Choi, Jisun;Lange, David A.;Zi, Goangseup
    • Computers and Concrete
    • /
    • v.17 no.2
    • /
    • pp.255-269
    • /
    • 2016
  • The waste glass sludge is a waste produced in the glass industry. It is in a dust form and disposed with water. In the disposal process, various cohesive agents are incorporated in order to precipitate the glass particles efficiently. In this paper, we investigate the pozzolanic reaction of the waste glass sludge incorporating precipitation additives experimentally. The consumption of calcium hydroxide, the setting time and the compressive strength and the pore structure were tested for two different types of the waste glass sludge depending on whether precipitation additives were used. It was found that the waste glass sludge incorporating the precipitation additives had a higher pozzolanic potential than the reference waste glass sludge without precipitation additives.

Analytical performance evaluation of modified inclined studs for steel plate concrete wall subjected to cyclic loads

  • Lim, Jin-Sun;Jeong, Young-Do;Nam, Jin-Won;Kim, Chun-Ho;Yi, Seong-Tae
    • Computers and Concrete
    • /
    • v.17 no.2
    • /
    • pp.227-240
    • /
    • 2016
  • An analytical study was conducted to investigate the effect of the shape and spacing of modified inclined studs used as shear connector between concrete and steel plate on the cyclic behavior of steel plate concrete (SC) shear wall. 9 different analysis cases were adopted to determine the optimized shape and spacing of stud. As the results, the skeleton curves were obtained from the load-displacement hysteresis curves, and the ultimate and yielding strengths were increased as the spacing of studs decrease. In addition, the strength of inclined studs is shown to be bigger compared to that of conventional studs. The damping ratios increased as the decrease of stiffness ratio. Finally, with decreasing the spacing distance of studs, the cumulative dissipated energy was increased and the seismic performance was improved.

Numerical evaluation of FRP composite retrofitted reinforced concrete wall subjected to blast load

  • Nam, Jin-Won;Yoon, In-Seok;Yi, Seong-Tae
    • Computers and Concrete
    • /
    • v.17 no.2
    • /
    • pp.215-225
    • /
    • 2016
  • High performance materials such as Fiber Reinforced Plastic (FRP) are often used for retrofitting structures against blast loads due to its ductility and strength. The effectiveness of retrofit materials needs to be precisely evaluated for the retrofitting design based on the dynamic material responses under blast loads. In this study, the blast resistance of Carbon Fiber Reinforced Plastic (CFRP) and Kevlar/Glass hybrid fabric (K/G) retrofitted reinforced concrete (RC) wall is analyzed by using the explicit analysis code LS-DYNA, which accommodates the high-strain rate dependent material models. Also, the retrofit effectiveness of FRP fabrics is evaluated by comparing the analysis results for non-retrofitted and retrofitted walls. The verification of the analysis is performed through comparisons with the previous experimental results.

Effect of fiber geometry on the electromagnetic shielding performance of mortar

  • Kim, Young Jun;Yemam, Dinberu M.;Kim, Baek-Joong;Yi, Chongku
    • Computers and Concrete
    • /
    • v.17 no.2
    • /
    • pp.281-294
    • /
    • 2016
  • The increased awareness of electromagnetic wave hazards has prompted studies on electromagnetic shielding using conductive materials in the construction industry. Previous studies have explored the effects of the types of conductive materials and their mix proportions on the electromagnetic shielding performance; however, there has been insufficient research on the effect of the geometry of the conductive materials on the electromagnetic shielding performance. Therefore, in this study, the dependence of the electromagnetic shielding performance on the cross-sectional geometry, diameter and length of fibers was investigated. The results showed that the electromagnetic shielding performance improved when the fiber length increased or the diameter decreased, but the effect of the cross-sectional geometry of the fibers was smaller than the effect of the fiber spacing factor.

Neural network based model for seismic assessment of existing RC buildings

  • Caglar, Naci;Garip, Zehra Sule
    • Computers and Concrete
    • /
    • v.12 no.2
    • /
    • pp.229-241
    • /
    • 2013
  • The objective of this study is to reveal the sufficiency of neural networks (NN) as a securer, quicker, more robust and reliable method to be used in seismic assessment of existing reinforced concrete buildings. The NN based approach is applied as an alternative method to determine the seismic performance of each existing RC buildings, in terms of damage level. In the application of the NN, a multilayer perceptron (MLP) with a back-propagation (BP) algorithm is employed using a scaled conjugate gradient. NN based model wasd eveloped, trained and tested through a based MATLAB program. The database of this model was developed by using a statistical procedure called P25 method. The NN based model was also proved by verification set constituting of real existing RC buildings exposed to 2003 Bingol earthquake. It is demonstrated that the NN based approach is highly successful and can be used as an alternative method to determine the seismic performance of each existing RC buildings.

Genetic-fuzzy approach to model concrete shrinkage

  • da Silva, Wilson Ricardo Leal;Stemberk, Petr
    • Computers and Concrete
    • /
    • v.12 no.2
    • /
    • pp.109-129
    • /
    • 2013
  • This work presents an approach to model concrete shrinkage. The goal is to permit the concrete industry's experts to develop independent prediction models based on a reduced number of experimental data. The proposed approach combines fuzzy logic and genetic algorithm to optimize the fuzzy decision-making, thereby reducing data collection time. Such an approach was implemented for an experimental data set related to self-compacting concrete. The obtained prediction model was compared against published experimental data (not used in model development) and well-known shrinkage prediction models. The predicted results were verified by statistical analysis, which confirmed the reliability of the developed model. Although the range of application of the developed model is limited, the genetic-fuzzy approach introduced in this work proved suitable for adjusting the prediction model once additional training data are provided. This can be highly inviting for the concrete industry's experts, since they would be able to fine-tune their models depending on the boundary conditions of their production processes.

Flexural performance and fiber distribution of an extruded DFRCC panel

  • Lee, Bang Yeon;Han, Byung-Chan;Cho, Chang-Geun;Kim, Yun Yong
    • Computers and Concrete
    • /
    • v.10 no.2
    • /
    • pp.105-119
    • /
    • 2012
  • This paper presents the mix composition and production method that was applied to an extruded Ductile Fiber Reinforced Cement Composite (DFRCC) panel, as well as the flexural performance, represented by deformation hardening behavior with multiple cracking. The effect of fiber distribution characteristics on the flexural behavior of the panel is also addressed. In order to demonstrate the fiber distribution effect, a series of experiments and analyses, including a sectional image analysis and micromechanical analysis, was performed. From the experimental and analysis results, it was found that the flexural behavior of the panel was highly affected by a slight variation in the mix composition. In terms of the average fiber orientation, the fiber distribution was found to be similar to that derived under the assumption of a two-dimensional random distribution, irrespective of the mix composition. In contrast, the probability density function for the fiber orientation was measured to vary depending on the mix composition.

Software for application of Newton-Raphson method in estimation of strains in prestressed concrete girders

  • Gocic, Milan;Sadovic, Enis
    • Computers and Concrete
    • /
    • v.10 no.2
    • /
    • pp.121-133
    • /
    • 2012
  • Structures suffer from damages in their lifetime due to time-dependant effects, such as fatigue, creep and shrinkage, which can be expressed by concrete strains. These processes could be seen in the context of strain estimation of pre-stressed structures in two phases by using numerical methods. Their aim is checking and validating existing code procedures in determination of deformations of pre-tensioned girders by solving a system of nonlinear equations with strains as unknown parameters. This paper presents an approach based on the Newton-Raphson method for obtaining the stresses and strains in middle span section of pre-stressed girders according the equilibrium state.

Displacement-based seismic design of reinforced concrete columns strengthened by FRP jackets using a nonlinear flexural model

  • Cho, Chang-Geun;Yun, Hee-Cheon;Kim, Yun-Yong
    • Computers and Concrete
    • /
    • v.6 no.2
    • /
    • pp.95-108
    • /
    • 2009
  • In the current research, a displacement-based seismic design scheme to retrofit reinforced concrete columns using FRP composite materials has been proposed. An accurate prediction for the nonlinear flexural analysis of FRP jacketed concrete members has been presented under multiaxial constitutive laws of concrete and composite materials. Through modification of the displacement coefficient method (DCM) and the direct displacement-based design method (DDM) of reinforced concrete structures, two algorithms for a performance-based seismic retrofit design of reinforced concrete columns with a FRP jacket have been newly introduced. From applications to retrofit design it is known that two methods are easy to apply in retrofit design and the DCM procedure underestimates the target displacement to compare with the DDM procedure.