• 제목/요약/키워드: $Ca^{2+}$current

검색결과 635건 처리시간 0.032초

Two Types of Voltage-activated Calcium Currents in Goldfish Horizontal Cells

  • Paik, Sun-Sook;Bai, Sun-Ho;Jung, Chang-Sub
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제9권5호
    • /
    • pp.269-273
    • /
    • 2005
  • In horizontal cells (HCs) that were freshly dissociated from goldfish retina, two types of voltagedependent calcium currents ($I_{Ca}$) were recorded using a patch-clamping configuration: a transient type current and a sustained type current. The cell was held at -40 mV, and the prepulse step of -90 mV was applied before command pulse between -65 and +55 mV. The transient $Ca^{2+}$ current was activated by depolarization to around -50 mV from a prepulse voltage of -90 mV lasting at least 400 ms and reached a maximal value near -25 mV. On the other hand, the sustained $Ca^{2+}$ current was induced by pre-inactivation for less than 10 ms duration. Its activation started near -10 mV and peaked at +20 mV. $Co^{2+}$ (2 mM) suppressed both of these two components, but nifedipine ($20{\mu}M$), L-type $Ca^{2+}$ channel antagonist, blocked only the sustained current. Based on the activation voltage and the pharmacolog$I_{Ca}$l specificity, the sustained current appears to be similar to L-type $I_{Ca}$ and the transient type to T-type $I_{Ca}$. This study is the first to confirm that transient type $I_{Ca}$ together with the sustained one is present in HCs dissociated from goldfish retina.

심장세포에서 세포내 Ca2+ 증가에 의해 활성화되는 Cl- 통로의 특성과 역할 (Thecharacters of Ca2+ activated Cl- channel and its role in the cardiac myocytes)

  • 박춘옥;김양미;한재희;홍성근
    • 대한수의학회지
    • /
    • 제34권1호
    • /
    • pp.25-36
    • /
    • 1994
  • The inward tail current after a short depolarizing pulse has been known as Na-Ca exchange current activated by intracellular calcium which forms late plateau of the action potential in rabbit atrial myocytes. Chloride conductance which is also dependent upon calcium concentration has been reported as a possible tail current in many other excitable tissues. Thus, in order to investigate the exsitance of the calcium activated chloride current and its contribution to tail current, whole cell voltage clamp measurement has been made in single atrial cells of the rabbit. The current was recorded during repolarization following a brief 2 ms depolarizing pulse to +40mV from a holding potential of -70mV. When voltage-sensitive transient outward current was blocked by 2 mM 4-aminopyridine or replacement potassium with cesium, the tail current were abolished by ryanodine$(1{\mu}M)$ or diltiazem$(10{\mu}M)$ and turned out to be calcium dependent. The magnitudes of the tail currents were increased when intracellular chloride concentration was increased to 131 mM from 21 mM. The current was decreased by extracellular sodium reduction when intracellular chloride concentration was low(21 mM), but it was little affected by extracellular sodium reduction when intracellual chloride concentration was high(131 mM). The current-voltage relationship of the difference current before and after extracellular sodium reduction, shows an exponential voltage dependence with the largest magnitude of the current occurring at negative potentials, with is similar to current-voltage relationship at negative potentials, which is similar to current-voltage relationship of Na-Ca exchange current. The current was also decreased by $10{\mu}M$ niflumic acid and 1 mM bumetanide, which is well known anion channel blockers. The reversal potentials shifted according to changes in chloride concentration. The current-voltage relationships of the niflumic acid-sensitive currents in high and low concentration of chloride were well fitted to those predicted as chloride current. From the above results, it is concluded that calcium activated chloride component exists in the tail current with Na-Ca exchange current and it shows the reversal of tail current. Therefore it is thought that in the physiologic condition it leads to rapid end of action potential which inhibits calcium influx and it contributes to maintain the low intracellular calcium concentration with Na-Ca exchange mechanism.

  • PDF

The Role of Intracellular $Mg^{2+}$ in Regulation of $Ca^{2+}-activated$ $K^+$ Channel in Pulmonary Arterial Smooth Muscle Cells of the Rabbit

  • Lee, Suk-Ho;Park, Myoung-Kyu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제2권5호
    • /
    • pp.611-616
    • /
    • 1998
  • Although the $Ca^{2+}-activated\;K^+\;(I_{K,Ca})$ channel is known to play an important role in the maintenance of resting membrane potential, the regulation of the channel in physiological condition is not completely understood in vascular myocytes. In this study, we investigated the role of cytoplasmic $Mg^{2+}$ on the regulation of $I_{K,Ca}$ channel in pulmonary arterial myocytes of the rabbit using the inside-out patch clamp technique. $Mg^{2+}$ increased open probability (Po), but decreased the magnitude of single channel current. $Mg^{2+}-induced$ block of unitary current showed strong voltage dependence but increase of Po by $Mg^{2+}$ was not dependent on the membrane potential. The apparent effect of $Mg^{2+}$ might, thus, depend on the proportion between opposite effects on the Po and on the conductance of $I_{K,Ca}$ channel. In low concentration of cytoplasmic $Ca^{2+},\;Mg^{2+}$ increased $I_{K,Ca}$ by mainly enhancement of Po. However, at very high concentration of cytoplasmic $Ca^{2+},$ such as pCa 5.5, $Mg^{2+}$ decreased $I_{K,Ca}$ through the inhibition of unitary current. Moreover, $Mg^{2+}$ could activate the channel even in the absence of $Ca^{2+}.\;Mg^{2+}$ might, therefore, partly contribute to the opening of $I_{K,Ca}$ channel in resting membrane potential. This phenomenon might explain why $I_{K,Ca}$ contributes to the resting membrane potential where membrane potential and concentration of free $Ca^{2+}$ are very low.

  • PDF

에스트로겐이 생쥐 초기배의 $\textrm{Ca}^{2+}$ 전류에 미치는 영향 (17 beta-Estradiol Increases Peak of $\textrm{Ca}^{2+}$ Current in Mouse Early Embryo)

  • 강다원;신용원;김은심;홍성근;한재희
    • 한국수정란이식학회지
    • /
    • 제16권2호
    • /
    • pp.79-89
    • /
    • 2001
  • 배분화과정시 나타나는 $Ca^{2+}$ 변화에 미치는 $E_2$의 영향을 알아보고자 whole cell voltage clamp 기법, 방사선 등위원소 면역측정법, 그리고 공초점 현미경을 통하여 $E_2$처리 후 나타나는 $Ca^{2+}$ 전류 변화 및 세포내 $Ca^{2+}$ 농도 변화를 조사하였다. 생쥐의 미성숙 난자는 난소의 난포를 천자하고, 배란난자는 과배란 처리 후 난관에서 회수하였다. 수정란은 과배란 처리 후 수컷 생쥐와 교미를 유도한 후 각각의 단계에 맞는 수정란을 채란하였다. 혈중 $E_2$의 농도는 심장을 천자하여 혈액을 채취한 후 배발달 단계와 호르몬 처리 시간이 일치하는 혈액만을 사용하였다. 본 실험의 결과를 요약하면 다음과 같다. 1. $E_2$처리시 미성숙난자의 제 1극체 형성률 (성숙의 지표)은 $E_2$를 처리하지 않은 난자(83% : 83/100)보다 $E_2$를 처리한 난자 (94%, 94/100)에서 유의적 (P<0.05)으로 높게 나타났다. 2. $E_2$를 처리하였을 때 $Ca^{2+}$ 내향전류의 변화는 -10 mV에서 -1.23$\pm$0.01 nA (n=15)에서 -1.50$\pm$0.03 nA (n=15)로 122% 상승함으로써 유의한 (P<0.05) 변화를 보였다. 3. $E_2$를 처리하지 않은 난자 및 수정란을 1로 한 후 $E_2$를 처리한 난자 및 수정란의 변화를 상대적인 값으로 표시하였다. $E_2$처리한 난자는 1.22$\pm$0.17 (n=10), $E_2$처리한 전핵배는 1.20$\pm$0.14 (n=10), $E_2$처리한 2세포기배는 1.07$\pm$0.01 (n=10), 4세포기배는 1.05$\pm$0.09 (n=10)를 나타냄으로써 수정란의 단계마다 $E_2$의 반응 결과가 차이가 남을 알 수 있었다. 4. $E_2$농도 곡선에서 PMSG 처리 후 $E_2$의 혈중농도는 계속적인 상승을 보이다가 배란시기에 최고치를 나타내었으며, 배란 후 다시 감소하여 8세포기에서는 급격한 감소현상이 나타났다. 이후 다시 상실기를 거쳐 배반포기 임신기간동안 $E_2$의 농도가 상승하였다. 5. $E_2$처리 후 세포내 $Ca^{2+}$ 농도변화의 결과로, $E_2$를 처리하지 않은 난자들의 세포내 $Ca^{2+}$ 농도는 836.4$\pm$131.2 (n=10), $E_2$를 처리한 난자들은 1736.4$\pm$192.0 (n=10)로써 유의한 (P<0.05) 차이를 보였다. 이상의 결과로부터 $E_2$처리에 의한 세포내 $Ca^{2+}$ 농도 상승은 $E_2$$Ca^{2+}$ 통로를 자극함으로써 세포바깥의 $Ca^{2+}$이 세포안으로 이동하여 나타나는 변화로 생각된다.

  • PDF

Inactivation of N-Type Calcium Current in Rat Sympathetic Neurons

  • Goo, Yong-Sook;Keith S. Elmslie
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 1999년도 학술발표회 진행표 및 논문초록
    • /
    • pp.52-52
    • /
    • 1999
  • Inactivation of N-type calcium current has been reported to be voltage dependent (Jones & Marks, 1989) and $Ca^{2+}$ dependent(Cox & Dunlap, 1994). We examined inactivation by recording currents from the same cell both in [B $a^{2+}$]$_{o}$ and [C $a^{2+}$]$_{o}$ in rat sympathetic neurons. With 11 mM internal EGTA, fractional inactivation[l-(current amplitude at the end of 5 sec pulse/peak current amplitude [1-(current amplitude at the end of 5 sec pulse/peak current amplitude)] was larger in $Ca^{2+}$(0.80$\pm$0.07) than in $Ba^{2+}$(0.69$\pm$0.10)(n=31, p<0.001), but the current traces were nicely fitted with two exponential components both in $Ba^{2+}$ and $Ca^{2+}$.(omitted)ted)ted)

  • PDF

Lysophosphatidylcholine Increases $Ca^{2+}$ Current via Activation of Protein Kinase C in Rabbit Portal Vein Smooth Muscle Cells

  • Jung, Seung-Soo;Lee, Young-Ho;Han, Sung-Sik;Kim, Young-Whan;Nam, Taik-Sang;Ahn, Duck-Sun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제12권1호
    • /
    • pp.31-35
    • /
    • 2008
  • Lysophosphatidylcholine (LPC), a metabolite of membrane phospholipids by phospholipase $A_2$, has been considered responsible for the development of abnormal vascular reactivity during atherosclerosis. $Ca^{2+}$ influx was shown to be augmented in atherosclerotic artery which might be responsible for abnormal vascular reactivity. However, the mechanism underlying $Ca^{2+}$ influx change in atherosclerotic artery remains undetermined. The purpose of the present study was to examine the effects of LPC on L-type $Ca^{2+}$ current $(I_{Ca(L)})$ activity and to elucidate the mechanism of LPC-induced change of $I_{Ca(L)}$ in rabbit portal vein smooth muscle cells using whole cell patch clamp. Extracellular application of LPC increased $I_{Ca(L)}$ through whole test potentials, and this effect was readily reversed by washout. Steady state voltage dependency of activation or inactivation properties of $I_{Ca(L)}$ was not significantly changed by LPC. Staurosporine (100 nM) or chelerythrine $(3{\mu}M)$, which is a potent inhibitor of PKC, significantly decreased basal $I_{Ca(L)}$, and LPC-induced increase of $I_{Ca(L)}$ was significantly suppressed in the presence of PKC inhibitors. On the other hand, application of PMA, an activator of PKC, increased basal $I_{Ca(L)}$ significantly, and LPC-induced enhancement of $I_{Ca(L)}$ was abolished by pretreatment of the cells with PMA. These findings suggest that LPC increased $I_{Ca(L)}$ in vascular smooth muscle cells by a pathway that involves PKC, and that LPC-induced increase of $I_{Ca(L)}$ might be, at least in part, responsible for increased $Ca^{2+}$ influx in atherosclerotic artery.

Changes in Intracellular $Ca^{2+}$ Concentration Induced by L-Type $Ca^{2+}$ Channel Current in Guinea-Pig Gastric Myocytes

  • Kim, Ki-Whan
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 1997년도 학술발표회
    • /
    • pp.17-17
    • /
    • 1997
  • We investigated the relationship between the voltage-operated calcium channel current and the corresponding [Ca$^{2+}$]i change (Ca$^{2+}$-transient) in guinea-pig gastric myocyte. Fluorescence microspectroscopy was combined with conventional whole-cell patch clamp technique and fura-2 (80 $\mu$M) was added into the CsCl-rich pipette solution.(omitted)

  • PDF

The role of calmodulin in regulating calcium-permeable PKD2L1 channel activity

  • Park, Eunice Yon June;Baik, Julia Young;Kwak, Misun;So, Insuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제23권3호
    • /
    • pp.219-227
    • /
    • 2019
  • Polycystic kidney disease 2-like-1 (PKD2L1), polycystin-L or transient receptor potential polycystin 3 (TRPP3) is a TRP superfamily member. It is a calcium-permeable non-selective cation channel that regulates intracellular calcium concentration and thereby calcium signaling. Although the calmodulin (CaM) inhibitor, calmidazolium, is an activator of the PKD2L1 channel, the activating mechanism remains unclear. The purpose of this study is to clarify whether CaM takes part in the regulation of the PKD2L1 channel, and if so, how. With patch clamp techniques, we observed the current amplitudes of PKD2L1 significantly reduced when co-expressed with CaM and $CaM{\triangle}N$. This result suggests that the N-lobe of CaM carries a more crucial role in regulating PKD2L1 and guides us into our next question on the different functions of two lobes of CaM. We also identified the predicted CaM binding site, and generated deletion and truncation mutants. The mutants showed significant reduction in currents losing PKD2L1 current-voltage curve, suggesting that the C-terminal region from 590 to 600 is crucial for maintaining the functionality of the PKD2L1 channel. With PKD2L1608Stop mutant showing increased current amplitudes, we further examined the functional importance of EF-hand domain. Along with co-expression of CaM, ${\triangle}EF$-hand mutant also showed significant changes in current amplitudes and potentiation time. Our findings suggest that there is a constitutive inhibition of EF-hand and binding of CaM C-lobe on the channel in low calcium concentration. At higher calcium concentration, calcium ions occupy the N-lobe as well as the EF-hand domain, allowing the two to compete to bind to the channel.

Acidic pH-activated $Cl^-$ Current and Intracellular $Ca^{2+}$ Response in Human Keratinocytes

  • Park, Su-Jung;Choi, Won-Woo;Kwon, Oh-Sang;Chung, Jin-Ho;Eun, Hee-Chul;Earm, Young-E;Kim, Sung-Joon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제12권4호
    • /
    • pp.177-183
    • /
    • 2008
  • The layers of keratinocytes form an acid mantle on the surface of the skin. Herein, we investigated the effects of acidic pH on the membrane current and $[Ca^{2+}]_c$ of human primary keratinocytes from foreskins and human keratinocyte cell line (HaCaT). Acidic extracellular pH ($pH_e{\leq}5.5$) activated outwardly rectifying $Cl^-$ current ($I_{Cl,pH}$) with slow kinetics of voltage-dependent activation. $I_{Cl,pH}$ was potently inhibited by an anion channel blocker 4,4'-diisothiocyanostilbene-2,2'-disulphonic acid (DIDS, 73.5% inhibition at 1${\mu}$M). $I_{Cl,pH}$ became more sensitive to $pH_e$ by raising temperature from $24^{circ}C$ to $37^{circ}C$. HaCaT cells also expressed $Ca^{2+}$-activated $Cl^-$ current ($I_{Cl,Ca}$), and the amplitude of $I_{Cl,Ca}$ was increased by relatively weak acidic $pH_e$ (7.0 and 6.8). Interestingly, the acidic $pH_e$ (5.0) also induced a sharp increase in the intracellular [$Ca^{2+}$] (${\triangle}[Ca^{2+}]_{acid}$) of HaCaT cells. The ${\triangle}[Ca^{2+}]_{acid}$ was independent of extracellular $Ca^{2+}$, and was abolished by the pretreatment with PLC inhibitor, U73122. In primary human keratinocytes, 5 out of 28 tested cells showed ${\triangle}[Ca^{2+}]_{acid}$. In summary, we found $I_{Cl,pH}$ and ${\triangle}[Ca^{2+}]_{acid}$ in human keratinocytes, and these ionic signals might have implication in pathophysiological responses and differentiation of epidermal keratinocytes.

막결합 축전식 탈염장치를 이용한 혼합용액에서 칼슘이온의 선택적 제거 (Selective Removal of Calcium Ions from a Mixed Solution using Membrane Capacitive Seionization System)

  • 김유진;최재환
    • 공업화학
    • /
    • 제23권5호
    • /
    • pp.474-479
    • /
    • 2012
  • 막결합 축전식 탈염(MCDI) 기술을 이용하여 $Na^{+}$$Ca^{2+}$ 이온이 혼합된 용액에서 $Ca^{2+}$ 이온의 선택적 제거 가능성을 연구하였다. 양이온교환막인 CMX막에 대한 $Ca^{2+}$ 이온의 선택성을 확인하기 위해 흡착평형 실험을 실시하였다. 그리고 MCDI 셀을 이용해 혼합용액(5 meq/L NaCl + 2 meq/L $CaCl_{2}$)에 대한 탈염실험을 수행하였다. 흡착평형 실험결과 용액과 CMX막에서 $Ca^{2+}$ 이온의 당량분율은 각각 28.6, 87.2%를 보여 CMX막이 $Ca^{2+}$ 이온에 대해 높은 선택성을 갖는 것을 확인하였다. MCDI 셀에 일정한 전류를 인가하면서 셀 전위가 1.0 V에 도달할 때까지 탈염실험을 실시하였다. 그 결과 흡착된 이온의 총량은 인가한 전류밀도에 큰 영향을 받지 않고 일정하였다. 그러나 흡착된 이온 중 $Ca^{2+}$ 이온의 비율은 전류밀도에 반비례하였으며 200, 300, 500, $700\;A/m^{2}$의 전류밀도에서 각각 81.4, 78.4, 77.0, 74.5%로 나타났다. 이러한 결과는 낮은 전류밀도에서 CMX막에 흡착된 $Ca^{2+}$ 이온의 비율이 높았기 때문인 것으로 판단된다.