• 제목/요약/키워드: $Ca^{2+}$ influx

검색결과 316건 처리시간 0.028초

Protein Kinase 억제제 첨가 후 Platelet-Activating Factor에 의하여 자극된 호중구반응의 변경 (Alteration of the Activated Responses in Platelet-Activating Factor-Stimulated Neutrophils by Protein Kinase Inhibitors)

  • 이강건;고지영;함동석;신용규;이정수
    • 대한약리학회지
    • /
    • 제32권1호
    • /
    • pp.103-112
    • /
    • 1996
  • Platelet-activating factor (PAF)에 의하여 자극된 호중구 respiratory burst, 탈과립과 세포질 칼슘농도의 증가에 있어 protein kinase C와 protein tyrosine kinase의 역할을 관찰하였다. PAF에 의하여 자극된 호중구에서 superoxide 및 $H_2O_2$의 생성과 myeloperoxidase와 acid phosphatase의 유리는 protein kinase C 억제제인 staurosporine과 H-7 그리고 protein tyrosine kinase 억제제인 genistein과 tyrphostin에 의하여 억제되었다. PAF에 의한 호중구 세포내 칼슘농도의 증가는 staurosporine, genistein과 methyl-2,5-dihydroxycinnamate에 의하여 억제 되었다. Staurosporine은 PAF에 의하여 자극된 호중구에서 세포내 칼슘유리와 망간유입을 억제 하였다. Genistein과 methyl-2,5-dihydroxycinnamate는 PAF에 의한 망간유입을 억제하였으나, 세포내 칼슘유리에 대한 이들의 효과는 관찰되지 않았다. PMA에 의하여 활성화된 호중구에서 세포내 칼슘농도의 증가에 대한 PAF의 자극효과는 감소되었다. Protein kinase C와 protein tyrosine kinase는 PAF에 의하여 자극된 호중구에서의 respiratory burst, lysosomal enzyme유리와 칼슘동원에 관여할 것으로 제시된다. 세포내 칼슘농도의 증가는 protein kinase의 영향을 다르게 받는 세포내 칼슘유리와 세포외부로 부터의 칼슘유입에 의하여 이루어질 것으로 추정된다. Protein kinase C가 활성화되어 있는 상태에서 세포내 칼슘동원에 대한 PAF의 자극작용은 감소될 것으로 시사된다.

  • PDF

정자운동 개시 기구 (Mechanisms for the Initiation of Sperm Motility)

  • 고강희;강경호;장영진
    • 한국발생생물학회지:발생과생식
    • /
    • 제7권2호
    • /
    • pp.81-88
    • /
    • 2003
  • 정자의 운동개시는 수정시에 정자와 난자가 만나기 위한 전제조건이다. 동물의 정자는 CAMP와Ca2'의 조절기구에 의해서 정자의 운동개시가 일어난다. 정자운동 활성 및 개시를 위한 세포 신호전달기구는 멍게류와 연어과 어류에서 많은 연구가 이루어져 왔다. 멍게류의 경우, 난에서 분비되는 정자 활성 및 유인물질(sperm-activating and -attracting factor)은 정자 활성 및 난으로의 유인을 위하여 외부의 $Ca^{2+}$을 요구한다. 한편 연어과 어류의 정자에서는 Cyclic AMP 의존형의 단백질 인산화가 정자 운동개시 기구에 관여한다. 방정된 정자 주위의 $K^{+}$ 농도의 감소는 특정한 $K^{+}$ channel 및 dihydropyridine 감수성의 L-/T- type $Ca^{2+}$ channel을 통한 $K^{+}$ 유출과 $Ca^{2+}$ 유입에 의해 세포막의 과분극과 세포내 $Ca^{2+}$ 이온의 농도증가를 가져온다. 세포막의 과분극에 의해서 합성된 cyclic AMP는 정자 운동개시의 주요기구인 cyclic AMP의존형의 단백질 인산화를 유도한다.

  • PDF

사람 및 흰쥐의 자궁근에서 Vanadate에 의한 수축에 미치는 외부 Calcium 및 Na-pump억제의 영향 (Effects of External $Ca^{2+}$ ana the Inhibition of Na-pump on the Vanadate-induced Contraction in the Isolated Human and Rat Uterine Smooth Muscle)

  • 정진섭;한복기;우재석;이상호
    • The Korean Journal of Physiology
    • /
    • 제18권2호
    • /
    • pp.125-137
    • /
    • 1984
  • Vanadate의 수축에 이용되는 $Ca^{2+}$의 동원 경로와 Na-Pump억제가 vanadate의 수축에 어떤 영향을 미치는 지를 밝히기 위해 본 실험을 시행하여 다음과 같은 곁과를 얻었다. 1) 흰쥐의 자궁근에서는 vanadate는 수축을 일으켜 $5{\times}10^{-4}M$에서 최대수축을 나타내었으며 사람의 자궁근이 흰쥐의 자중근에 비해 vanadate에 더 민감한 반응을 보였다. 2) Vanadate에 의한 수축은 $Ca^{2+}$제거에 의해 완전히 억제되지 않았고 사람의 자궁근이 외부 $Ca^{2+}$의 농도변화에 더 민감한 반응을 보였다. 3) Vanadate에 의한 수축은 verapamil농도를 증가시킴에 따 억제되었으며 100k에 극한 수축을 완전 억제시키는$3{\times}10^{-5}M$ verapamil 존재하에서도 최대수의 40%정도가 남아있었고, 이 크기는 $Ca^{2+}$없는 용액에서의 수축의 크기와 유사하였다. 4) Na-pump억제시 vanadate의 수축은 증가하였고 이 현상은 $3{\times}10^{-5}M$ verapamil 존재하에서도 나타났다. 5) $Ca^{2+}$없는 ouabain용액에서 전처치후에 vanadate에 의한 수축은 증가하지 않았으나 외부내 $Ca^{2+}$을 부가할 나타나는 반음은 대조군에 비해 현저히 증가하였다. 6) Verapamil 존재시 vanadate에 의한 $Ca^{45}$유입은 완전히 억제되었으나 ouabain으로 처리한 후는 verapamil 존재하에서도 vanadate가 현저히 $Ca^{45}$유입을 일으켰다. 7) Ouabain이나 K 없는 용액으로 치리시간이 증가함에 따라 vanadate에 의한 수축의 증가정도는 더욱 더 현저하였다. 8) Ouabain 전처치시 증가된 vanadate에 의한 수축은 $10^{-4}M$ papaverine에 의해 현저히 억제되었다. 9) Acetylcholine에 의한 수축은 verapamil 존재하에서도 Na-pump억제 시간이 증가함에 따라 증가하였다. 이상의 결과로 볼 때 vanadate에 대해 사람의 자궁근이 흰쥐의 자궁근에 비해 더 민감한 반응을 보이고 vanadate에 의한 수축에는 외부와 내부 $Ca^{2+}$이 모두 이용되며 Na-pump 억제시 여러가지 근수축물질이 verapamil에 의해 억제되지 않는 $Ca^{2+}$유입을 일으키며 이 유입경로의 성질은 확실히 알 수 없으나 Papaverine에 의해 억제되며 막전위의 변화와 관련이 있는 것으로 생각된다.

  • PDF

Distinct Cellular Calcium Metabolism in Radiation-sensitive RKO Human Colorectal Cancer Cells

  • Kim, Yun Tai;Jo, Soo Shin;Park, Young Jun;Lee, Myung Za;Suh, Chang Kook
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제18권6호
    • /
    • pp.509-516
    • /
    • 2014
  • Radiation therapy for variety of human solid tumors utilizes mechanism of cell death after DNA damage caused by radiation. In response to DNA damage, cytochrome c was released from mitochondria by activation of pro-apoptotic Bcl-2 family proteins, and then elicits massive $Ca^{2+}$ release from the ER that lead to cell death. It was also suggested that irradiation may cause the deregulation of $Ca^{2+}$ homeostasis and trigger programmed cell death and regulate death specific enzymes. Thus, in this study, we investigated how cellular $Ca^{2+}$ metabolism in RKO cells, in comparison to radiation-resistant A549 cells, was altered by gamma (${\gamma}$)-irradiation. In irradiated RKO cells, $Ca^{2+}$ influx via activation of NCX reverse mode was enhanced and a decline of $[Ca^{2+}]_i$ via forward mode was accelerated. The amount of $Ca^{2+}$ released from the ER in RKO cells by the activation of $IP_3$ receptor was also enhanced by irradiation. An increase in $[Ca^{2+}]_i$ via SOCI was enhanced in irradiated RKO cells, while that in A549 cells was depressed. These results suggest that ${\gamma}$-irradiation elicits enhancement of cellular $Ca^{2+}$ metabolism in radiation-sensitive RKO cells yielding programmed cell death.

적출 심근의 칼륨경축에 대한 칼슘이온 효과 (Effect of $Ca^{++}$ on High K-induced Contracture of Isolated Frog Ventricular Muscle)

  • 최윤백;김기환
    • The Korean Journal of Physiology
    • /
    • 제20권1호
    • /
    • pp.31-41
    • /
    • 1986
  • The sufficient myoplasmic $Ca^{++}$ to react with the contractile proteins is necessary to induce contraction of a cardiac muscle. These $Ca^{++}$ for the production of muscle contraction are supplied from the three recognized $Ca^{++}$ sources; internal $Ca^{++}$ release via the sarcoplasmic reticulum(SR), $Ca^{++}$ influx through a gated Ca-channel in the membrane as a Isi, and $Ca^{++}$ transport by the mechanism of Na/ca exchange. However, it is still controversial which $Ca^{++}$ sources act as a main contributor for myoplasmic $Ca^{++}$, Therefore, this study was undertaken in order to examine the $Ca^{++}$ sources for the contraction of frog ventricle. There is evidence that the SR is sparse in frog ventricular fibers, and that T-tubules are absent. Isolated ventricular strips of frog, Rana nigromaculata, were used in this experiment. Isometric tension was recorded by force transducer, and membrane potentials of ventricular muscles were measured through the intracellular glass microelectrodes, which were filled with 3M KCI and had resistance of $30{\pm}50M{\Omega}$. All experiments were performed at room temperature in a tris·buffered Ringer solution which was aerated with 100% $O_2$. Isotonic high K, low Na solution was used to induce K-contracture, K-contracture appeared at the concentration of 20 to 30mM-KCI and was potentiated in parallel with the increase in KCI concentration. The contracture had two components: an initial rapid phasic and a subsequent slow tonic contractile responses. Membrane Potentials measured at normal Ringer solution(2.5mM KCI) was -90 to -100 mV, and decreased linearly as the KCI concentration increased; -55mV at 20mM.KCI, -45mV at 30 mM.KCI, -30 mY at 50 mM.KCI, and -12 mV at 100 mM.KCI. K-contracture was evoked firstly at the membrane potential of -45 mV. The contracture was potentiated by the increase of bathing extracellular $Ca^{++}$ concentration. However, in the absence of $Ca^{++}$ the contracture was almost not induced by 50 mM.KCI solution. Caffeine(20mM) in normal Ringer solution, which is known to release $Ca^{++}$ from SR without substantial effects on the $Ca^{++}$ fluxes across the surface membrane, did not affect membrane potential and also not initiate contracture, but the caffeine in 20 mM-KCI Ringer solution produced a contracture. Above results suggest that the main $Ca^{++}$ source for the K·contracture of frog ventricle is $Ca^{++}$ influx through the voltage-dependent Ca-channel, and that in the K-contracture at the concentration of 100 mM-KCI, the mechanism of Na/ca exchange also partly contributs, in addition to the $Ca^{++}$ influx.

  • PDF

Inhibition of collagen-induced platelet aggregation by Sanggenon N via the Ca2+ signaling pathway

  • Hyuk-Woo Kwon
    • Journal of Applied Biological Chemistry
    • /
    • 제65권4호
    • /
    • pp.463-469
    • /
    • 2022
  • Cudrania tricuspidata (C. tricuspidata), a medicinal plant widely employed throughout Asia in ethnomedicine, has various bioactive properties, including antidiabetic, antiobesity, antitumor, and anti-inflammatory activities. In addition, the C. tricuspidata root extract reportedly inhibits platelet aggregation. Therefore, we focused on the active substances present in the C. tricuspidata extract. Sanggenon N (SN) is a flavonoid found in the root bark of C. tricuspidata. In the present study, we examined the inhibitory effects of SN on platelet aggregation, phosphoproteins, thromboxane A2 generation, and integrin αIIbβ3 activity. SN inhibited collagen-induced human platelet aggregation in a dose-dependent manner without cytotoxicity. Furthermore, SN suppressed Ca2+ mobilization and influx through associated signaling molecules, such as inositol 1, 4, 5-triphosphate receptor I (Ser1756), and extracellular signal-regulated kinase. In addition, SN inhibited thromboxane A2 generation and associated signaling molecules, including cytosolic phospholipase A2 and mitogen-activated protein kinase p38. Finally, SN could inhibit integrin (αIIb/β3) activity by regulating vasodilator-stimulated phosphoprotein and Akt. Collectively, SN possesses potent antiplatelet effects and is a potential therapeutic drug candidate to prevent platelet-related thrombosis and cardiovascular disease.

Induces Vasodilatation of Rat Mesenteric Artery in vitro Mainly by Inhibiting Receptor-Mediated $Ca^{2+}$ -Influx and $Ca^{2+}$ -Release

  • Cao Yong-Xiao;Zheng Jian-Pu;He Jian-Yu;Li Jie;Xu Cang-Bao;Edvinsson Lars
    • Archives of Pharmacal Research
    • /
    • 제28권6호
    • /
    • pp.709-715
    • /
    • 2005
  • The purpose of this study was to investigate the effect of atropine on peripheral vasodilation and the mechanisms involved. The isometric tension of rat mesenteric artery rings was recorded in vitro on a myograph. The results showed that atropine, at concentrations greater than 1$\mu$M, relaxed the noradrenalin (NA)-precontracted rat mesenteric artery in a concentration-dependent manner. Atropine-induced vasodilatation was mediated, in part, by an endothelium-dependent mechanism, to which endothelium-derived hyperpolarizing factor may contribute. Atropine was able to shift the NA-induced concentration-response curve to the right, in a non-parallel manner, suggesting the mechanism of atropine was not mediated via the ${\alpha}_1$-adrenoreceptor. The $\beta$-adrenoreceptor and ATP sensitive potassium channel, a voltage dependent calcium channel, were not involved in the vasodilatation. However, atropine inhibited the contraction derived from NA and $CaCl_2$ in $Ca^{2+}$-free medium, in a concentration dependent manner, indicating the vasodilatation was related to the inhibition of extracellular $Ca^{2+}$ influx through the receptor-operated calcium channels and intracellular $Ca^{2+}$ release from the $Ca^{2+}$ store. Atropine had no effect on the caffeine-induced contraction in the artery segments, indicating the inhibition of intracellular $Ca^{2+}$ release as a result of atropine most likely occurs via the IP3 pathway rather than the ryanodine receptors. Our results suggest that atropine-induced vasodilatation is mainly from artery smooth muscle cells due to inhibition of the receptor-mediated $Ca^{2+}$-influx and $Ca^{2+}$-release, and partly from the endothelium mediated by EDHF.

The Involvement of Protein Kinase C and Tyrosine Kinase in Vanadate-induced Contraction

  • Sim, Sang-Soo;Kim, Chang-Jong
    • Archives of Pharmacal Research
    • /
    • 제21권3호
    • /
    • pp.315-319
    • /
    • 1998
  • Gastric smooth muscle of cats was used to investigate the involvement of protein kinase in vanadate-induced contraction. Vanadate caused a contraction of cat gastric smooth muscle in a dose-dependent manner. Vanadate-induced contraction was totally inhibited by 2 mM EGTA and 1.5 mM $LACI_3$ and significantly inhibited by $10\mu$M verapamil and $1\mu$M nifedipine, suggesting that vanadate-induced contraction is dependent on the extracellular $Ca^{2+}$ concentration, and the influx of extracellular $Ca^{2+}$ was mediated through voltage-dependent $Ca^{2+}$ channel. Both protein kinase C inhibitor and tyrosine kinase inhibitor significantly inhibited the vanadate-induced contraction and the combined inhibitory effect of two protein kinase inhibitors was greater than that of each one. But calmodulin antagonists did not have any influence on the vanadate-induced contraction. On the other hand, both forskolin ($1\mu$M) and sodium nitroprusside ($1\mu$M) significantly inhibited vanadate-induced contraction. Therefore, these results suggest that both protein kinase C and tyrosino kinase are involved in the vanadate-induced contraction which required the influx of extracellular $Ca^{2+}$ in cat gastric smooth muscle, and that the contractile mechanism of vanadate may be different from that of agonist binding to its specific receptor.

  • PDF

배양된 생쥐여포에서 $Ca^{++}$ Uptake에 대한 Gonadotropin의 영향 (Effect of Gonadotropin on $Ca^{++}$ Uptake in Follicle-Enclosed Mouse Oocytes Cultured in Vitro)

  • 배인하;강신해
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제18권2호
    • /
    • pp.153-162
    • /
    • 1991
  • The present study was undertaken to clarify the role of calcium ion as a factor for the maturation of follicle-enclosed mouse oocytes. Follicles were isolated with two sharp needles under a stereomicroscope from mouse(ICR) ovaries which were treated PMSG 5 IU 45 hours previously. Isolated follicles were cultured for 14-16 hours in an organ culture system at $37^{\circ}C$, 5% $CO_2$ in air and in a 100% humidified incubator by treatment of hCG, EDTA and $^{45}Ca^{++}$. Culture medium was Modified Hank's Balanced Salt Sol. (MHBS) and addition of hCG (human chorionic gonadotropin) was made into two doses level 0.4 IU and 0.8IU from the stock sol. and also $^{45}Ca^{++}$ was treated in the culture medium. To explain the role of calcium, calcium chelating agent EDTA was treated to the culture of the mouse follicle-enclosed oocytes. Two observations were made in the present study; nucleus phase and $^{45}Ca^{++}$ uptake into the oocyte. HCG induced oocyte maturation in the follicle about two folds as much as the control group, whereas there is no difference in oocyte maturation between 0.4 IU and 0.8 IU of hCG. Optimum level of hCG seems to be 0.4 IU/ml in the mouse follicle culture. HCG stimulated $^{45}Ca^{++}$ uptake into the oocyte of the follicles by two folds. $^{45}Ca^{++}$ uptake in the control group is about 2.5 folds in comparison of the EDTA(1.71mM) treated group. However, calcium uptake in the EDTA treated groups tends to increase depending on the decrease of EDTA concentration. These observations suggest that firstly, hCG stimulates maturation of the oocyte of the follicle, secondly, $Ca^{++}$ influx is induced by hCG and thirdly, $Ca^{++}$ influx by the treatment of EDTA decreases as a dosage-dependent process. This $Ca^{++}$ uptake may take place by the changes of permeability which was induced by hCG treatment. That is, $Ca^{++}$ influx may trigger the resumption of oocyte maturation. It is further necessary in the future study how this $Ca^{++}$ uptake is induced by hCG and increases permeability of the follicle and oocyte.

  • PDF

Effects of (lR,9S)-($\beta$)-Hydrastine on Intracellular Calcium Concentration in PC12 Cells

  • Kim, Yu-Mi;Lee, Jae-Joon;Jin, Chun-Mei;Yang, Yoo-Jung;Yin, Shou-Yu;Kang, Min-Hee;Lee, Myung-Koo
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.97.2-97.2
    • /
    • 2003
  • (1R,9S)-(${\beta}$)-Hydrastine (HS) at 10-50 ${\mu}$M has been proven to have an inhibitory effect on dopamine biosynthesis in PC12 cells by the inhibition of tyrosine hydroxylase (TH) activity and TH gene expression. In the present study, therefore, the effects of HS on the basal and K$\^$+/-induced dopamine release, and Ca$\^$2+/ influx induced by high K$\^$+/ and caffeine in PC12 cells were investigated. The dopamine release by high K$\^$+/ (56 mM) was inhibited by co-incubation of 20 ${\mu}$M HS. Application of HS also significantly reduced the magnitude of the maintained Ca$\^$2+/ influx induced by K$\^$+/ depolarization. (omitted)

  • PDF