• Title/Summary/Keyword: $Ca^{2+}$ effect

Search Result 3,879, Processing Time 0.039 seconds

Effects of Chrysosplenol C on Intracellular $Ca^{2+}$ Transient in Isolated Rat Ventricular Myocytes (Chrysosplenol C가 분리한 백서 심실 근세포 $Ca^{2+}$ Transient에 미치는 효과)

  • Jung, Suk-Han;Huong, Do Thi Thu;Sung, Tran Van;Cuong, Nguyen Manh;Kim, Young-Ho;Woo, Sun-Hee
    • YAKHAK HOEJI
    • /
    • v.55 no.2
    • /
    • pp.168-171
    • /
    • 2011
  • Chrysosplenol C [5,6-dihydroxy-2-(4-hydroxy-3-methoxyphenyl)-3,7-dimethoxychromen-4-one] is a flavonoid found in Miliusa balansae and Pterocaulon sphacelatum. We have recently shown that chrysosplenol C has positive inotropic effect in isolated rat ventricular myocytes. In the present study, we explored a possible mechanism for the positive inotropic effect of chrysosplenol C by examining intracellular $Ca^{2+}$ transients during action potentials. The intracellular $Ca^{2+}$ transients were measured by confocal $Ca^{2+}$ imaging in field-stimulated single rat ventricular myocytes. Chrysosplenol C (50 ${\mu}M$) significantly increased the magnitudes (${\Delta}F/F_0$) of $Ca^{2+}$ transients (control, $1.08{\pm}0.05$; chrysosplenol C, $1.25{\pm}0.03$; n=8, P<0.01). Half decay time of the action potential-induced $Ca^{2+}$ transient was not altered by chrysosplenol C (50 ${\mu}M$) (control, $154{\pm}6$ ms; chrysosplenol C, $167{\pm}11$ ms; n=21). The $Ca^{2+}$ content in the sarcoplasmic reticulum (SR), measured as caffeine (10 mM)-induced $Ca^{2+}$ transient, was significantly decreased by chrysosplenol C (50 ${\mu}M$). These results indicate that chrysosplenol C increases $Ca^{2+}$ transients without altering $Ca^{2+}$ removal kinetics in ventricular myocytes, providing a possible mechanism for its positive inotropic effect.

Effect of Sunghyangchungisan on Contractile Reactivity and $Ca^{2+}$ metabolism in Isolated Rabbit Carotid Artery (성향정기산(星香正氣散)이 가토의 경동맥(頸動脈) 평활근(平滑筋) 긴장(緊張) 및 $Ca^{2+}$ 대사(代謝)에 미치는 영향(影響))

  • Kim, Young-Gyun;Kweon, Jung-Nam;Kim, Jong-Hoon
    • The Journal of Internal Korean Medicine
    • /
    • v.21 no.3
    • /
    • pp.377-388
    • /
    • 2000
  • Objective : This study was undertaken to evaluate the effect of Sunghyangchungisan (SHCS) on the regulation of vascular tone and $Ca^{2+}$ metabolism in arterial tissues. Vascular rings isolated from rabbit carotid artery were myographed isometrically in isolated organ baths and the effect of SHCS on contractile activities, endothelial function and $Ca^{2+}$ metabolism were determined. Methods : In phentobarbital sodium-anesthetized rabbits, SHCS administered through ear vein (100 mg/Kg body wt.) or intragastric dwelling tube (300 mg/Kg body wt.) attenuated phenylephrine (PE, 10 ${\mu}g$/Kg, i.v.)-induced increases in both systolic and diastolic cartoid arterial blood pressure. Results : In experiments with isolated arterial strips, SHCS relaxed arterial rings which were pre-contracted by phenylephrine (PE, 1 ${\mu}M$). The responses to SHCS were partially dose-dependent at concentrations lower than 0.5 mg/ml. When SHCS was applied prior to the exposure to PE, it inhibited the PE-induced contraction by a similar magnitude which was comparable to the relaxation of pre-contracted arterial rings. Washout of SHCS after observing its relaxant effect resulted in a full recovery of PE-induced contractions, indicating that the action mechanism is reversible. The observation that SHCS did not change the $ED_{50)$ of PE oh its dose-response curve ruled out the possible interaction of SHCS with ${\alpha}$-receptors. The relaxant effect of SHCS was not affected by removal of endothelium or a nitric oxide synthase inhibitor, L-NAME. Methylene blue, an inhibitor of the soluble guanylate cyclase, did not affect the relaxant effect of SHCS. These results suggest that the action of SHCS is not mediated by the endothelium nor soluble guanylate cyclase. Constant cGMP production determined in arterial strips in the presence or absence of SHCS is consistent with this conclusion. When contraction was induced by additive application of $Ca^{2+}$ in arterial rings which were pre-depolarized by high $K^+$ in a $Ca^{2+}$-free solution, the relaxant effect of SHCS was attenuated by increasing the $Ca^{2+}$ concentration. SHCS, when applied to the arterial rings pre-contracted by PE and then relaxed by nifedipine, a $Ca^{2+}$ channel blocker, did not show additive relaxation. SHCS partially blocked $Ca^{2+}$ influx stimulated by PE and high $K^+$ which was determined by 5-min ^{45}Ca$ uptake, while it did not affect $Ca^{2+}$ efflux. Conclusions : From above results, it is suggested that SHCS relax PE-induced contraction of rabbit carotid artery in an endothelium independent manner, andinhibition of $Ca^{2+}$ influx may contribute to the underling mechanism.

  • PDF

[${\alpha}-Adrenergic$ and Cholinergic Receptor Agonists Modulate Voltage-Gated $Ca^{2+}$ Channels

  • Nah, Seung-Yeol;Kim, Jae-Ha;Kim, Cheon-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.5
    • /
    • pp.485-493
    • /
    • 1997
  • We investigated the effect of ${\alpha}-adrenergic$ and cholinergic receptor agonists on $Ca^{2+}$ current in adult rat trigeminal ganglion neurons using whole-cell patch clamp methods. The application of acetylcholine, carbachol, and oxotremorine ($50\;{\mu}M\;each$) produced a rapid and reversible reduction of the $Ca^{2+}$ current by $17{\pm}6%,\;19{\pm}3%,\;and\;18{\pm}4%$, respectively. Atropine, a muscarinic antagonist, blocked carbachol- induced $Ca^{2+}$ current inhibition to $3{\pm}1%$. Norepinephrine ($50\;{\mu}M$) reduced $Ca^{2+}$ current by $18{\pm}2%$, while clonidine ($50\;{\mu}M$), an ${\alpha}2-adrenergic$ receptor agonist, inhibited $Ca^{2+}$ current by only $4{\pm}1%$. Yohimbine, an ${\alpha}2-adrenergic$ receptor antagonist, did not block the inhibitory effect of norepinephrine on $Ca^{2+}$ current, whereas prazosin, an ${\alpha}1-adrenergic$ receptor antagonist, attenuated the inhibitory effect of norepinephrine on $Ca^{2+}$ current to $6{\pm}1%$. This pharmacology contrasts with ${\alpha}2-adrenergic$ receptor modulation of $Ca^{2+}$ channels in rat sympathetic neurons, which is sensitive to clonidine and blocked by yohimbine. Our data suggest that the modulation of voltage dependent $Ca^{2+}$ channel by norepinephrine is mediated via an α1-adrenergic receptor. Pretreatment with pertussis toxin (250 ng/ml) for 16 h greatly reduced norepinephrine- and carbachol-induced $Ca^{2+}$ current inhibition from $17{\pm}3%\;and\;18{\pm}3%\;to\;2{\pm}1%\;and\;2{\pm}1%$, respectively. These results demonstrate that norepinephrine, through an ${\alpha}1-adrenergic$ receptor, and carbachol, through a muscarinic receptor, inhibit $Ca^{2+}$ currents in adult rat trigeminal ganglion neurons via pertussis toxin sensitive GTP-binding proteins.

  • PDF

Effect of Limestone Powder on Hydration of $C_{3}A-CaSO_{4}$ $\cdot$ $2H_{2}O$ system ($C_3A-CaSO_4\cdot2H_2O$ 계의 수화반응에 미치는 석회석미분말의 영향)

  • Lee Jong-Kyu;Chu Yong-Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.349-352
    • /
    • 2005
  • In this work, effects of limestone powder on hydration of $C_3A-CaSO_4\cdot2H_2O$ system was discussed based on the XRD Quantitative analysis, and the possibility of Delayed Ettringite Formation was also discussed. The early hydration of $C_{3}A$ was delayed by addition of $CaCO_{3}$ powder. The delay effect was enhanced by increasing of $CaCO_{3}$ content and finer powder of $CaCO_{3}$ addition. After consumption of $CaSO_4\cdot2H_2O$, the reaction of $CaCO_{3}$ is started. Delayed Ettringite Formation would take place because monosulfoaluminate is not stable in presence of $CaCO_{3}$. In order to prevent the delayed ettringite formation in $C_3A-CaSO_4\cdot2H_2O-CaCo_3$ system, the reduction of monosulfoaluminate formation is important. Therefore, by increasing the amount of $CaCO_{3}$ addition and finer $CaCO_{3}$ powder addition, the delayed ettringite formation can be prevented.

  • PDF

Effect of CaO and $SiO_2$ Addition on the Electromagnetic Properties of Mn-Zn Ferrites ($SiO_2$와 CaO 첨가가 Mn-Zn Ferrites의 전자기적 물성에 미치는 영향)

  • 서정주;신명승;한영호
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.9
    • /
    • pp.1033-1039
    • /
    • 1995
  • The current experiment has quantitatively investigated the effect of the content of CaO and SiO2 on the microstructure, density, electrical resistivity, power loss and initial permeability of manganese zinc ferrites. The density increased initially with CaO and SiO2 content and the further addition showed an adverse effect. The excess addition of CaO and SiO2 developed a discontinuous grain growth with numerous pores inside grains and lowered the electrical resistivity. The initial permeability decreased with increasing the content of SiO2. The samples with relatively low power loss showed that half of the total loss at 10$0^{\circ}C$, 100 kHz and 2000 Gauss was due to the eddy current loss.

  • PDF

Effects of Several Cardioactive Agents on the Regenerative $Ca^{++}$ Release in the Mechanically Disrupted Cardiac cells (심근에 작용하는 수종 약물이 쥐의 심근의 'Regenerative $Ca^{++}$ Release'에 미치는 영향)

  • Kang, Doo-Hee;Lee, Joong-Woo
    • The Korean Journal of Physiology
    • /
    • v.11 no.2
    • /
    • pp.9-16
    • /
    • 1977
  • The present experiment was conducted to see whether or not several cardioactive agents influence the 'regenerative $Ca^{++}$ release' in the mechanically disrupted cardiac cells. The mechanically disrupted cardiac cells were prepared by the method of Kerrick and Best from the ventricle of rat. The tension development of the disrupted cardiac cells was measured with a mechanoelectric transducer (RCA 5734). The results were summarized as follows 1) 2 mM caffeine enhanced the regenerative $Ca^{++}$ release, whereas 2 mM Procaine inhibited the $Ca^{++}$ release as reported by other investigators. 2) Epinephrine at concentrations of $10^{-7},\;10^{-6}\;and\;10^{-5}M$ increased the regenerative $Ca^{++}$ release significantly but showed a poor dose response on the $Ca^{++}$ release. 3) Propranolol showed no effect on the regenerative $Ca^{++}$ release when studied alone. Furthermore, it showed no antagonistic effect on an increased regenerative $Ca^{++}$ release induced by epinephrine. 4) Other cardioactive agents such as acetylcholine, ouabain, isoproterenol and c-AMP at concentrations of $10^{-6}M$ showed no effect on the regenerative $Ca^{++}$ release. From the above results, it may be concluded that the cardioactive actions of these agents are not related directly to the process of regenerative $Ca^{++}$ release.

  • PDF

Dexmedetomidine Modulates Histamine-induced Ca2+ Signaling and Pro-inflammatory Cytokine Expression

  • Yang, Dongki;Hong, Jeong Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.5
    • /
    • pp.413-420
    • /
    • 2015
  • Dexmedetomidine is a sedative and analgesic agent that exerts its effects by selectively agonizing ${\alpha}2$ adrenoceptor. Histamine is a pathophysiological amine that activates G protein-coupled receptors, to induce $Ca^{2+}$ release and subsequent mediate or progress inflammation. Dexmedetomidine has been reported to exert inhibitory effect on inflammation both in vitro and in vivo studies. However, it is unclear that dexmedetomidine modulates histamine-induced signaling and pro-inflammatory cytokine expression. This study was carried out to assess how dexmedetomidine modulates histamine-induced $Ca^{2+}$ signaling and regulates the expression of pro-inflammatory cytokine genes encoding interleukin (IL)-6 and -8. To elucidate the regulatory role of dexmedetomidine on histamine signaling, HeLa cells and human salivary gland cells which are endogenously expressed histamine 1 receptor were used. Dexmedetomidine itself did not trigger $Ca^{2+}$ peak or increase in the presence or absence of external $Ca^{2+}$. When cells were stimulated with histamine after pretreatment with various concentrations of dexmedetomidine, we observed inhibited histamine-induced $[Ca^{2+}]_i$ signal in both cell types. Histamine stimulated IL-6 mRNA expression not IL-8 mRNA within 2 hrs, however this effect was attenuated by dexmedetomidine. Collectively, these findings suggest that dexmedetomidine modulates histamine-induced $Ca^{2+}$ signaling and IL-6 expression and will be useful for understanding the antagonistic properties of dexmedetomidine on histamine-induced signaling beyond its sedative effect.

The Effects of CaCl2 Foliar Application on Inhibition of Abnormally Fermented Fruits and Chemical Composition of Oriental Melon(Cucumis melo L. var. makuwa Mak.) (CaCl2의 엽면처리(葉面處理)가 참외의 이상발효과 발생억제 및 과실성분(果實成分)에 미치는 영향)

  • Chung, Hee-Don;Youn, Sun-Joo;Choi, Young-Jun
    • Horticultural Science & Technology
    • /
    • v.16 no.2
    • /
    • pp.215-218
    • /
    • 1998
  • The effects of $CaCl_2$ foliar application on inhibition of the occurrence of abnormally fermented fruit and chemical composition of oriental melon (Cucumis melo L. var. makuwa Mak. cv. Gumssaragi-eunchun) were examined. $CaCl_2$, applied at 0.3~0.7%, had an apparent inhibitory effect on occurrence of abnormally fermented fruit when sprayed three times at five days intervals from 10 days after flowering. The effect of $CaCl_2$ was diminished when the field was irrigated during the ripening period. Sugar content in the fruits was not affected by the $CaCl_2$ treatment. The Ca content was higher in the normal fruit than in the fermented ones, but no difference was noted in the K and Mg levels. The occurrence of fermented fruit was increased when the applying nitrogen levels were less (10kg) or higher (25kg/10a) than normal supply. The nitrogen application had no effect on the calcium content in fruits.

  • PDF

Studies on Secretion of Catecholamines Evoked By DMPP and McN-A-343 in the Rat Adrenal Gland (흰쥐 적출 부신에서 DMPP 및 McN-A-343의 Catecholamine 분비작용에 관한 연구)

  • Lim, Dong-Yoon;Hwang, Doo-Hwan
    • The Korean Journal of Pharmacology
    • /
    • v.27 no.1
    • /
    • pp.53-67
    • /
    • 1991
  • The characteristics and differences between DMPP and McN-A-343 on the secretory effect of catecholamines(CA) were studied in the isolated perfused rat adrenal glands. DMPP(100 uM) and McN-A-343(100 uM) perfused into an adrenal vein of the gland casued significant increases in CA secretion. On molar basis the secretory effect of McN-A-343 was about one fifth as potent as that of DMPP. Tachyphylaxis to releasing effects of CA evoked by DMPP and McN-A-343 was not observed by repeated perfusion of these agents. The DMPP-evoked CA secretion was significantly inhibited by pretreatment with chlorisondamine, desipramine and profusion of $Ca^{2+}-free$ Krebs solution containing EGTA, while it was not affected by pirenzepine, ouabain and physostigmine. However, pretreatment with atropine rather enhanced CA release by DMPP. The releasing effect of CA induced by McN-A-343 was markedly depressed by pretreatment with atropine, pirenzepine, chlorisondamine, physostigmine, and perfusion of $Ca^{2+}-free$ medium plus EGTA but was not influenced by desipramine, except for the case of ouabain which clearly potentiated CA release by McN-A-343. These experimental results suggest that both DMPP and McN-A-343 cause greatly secretion of CA from the isolated perfused rat adrenal glands by a calcium-dependent exocytotic mechanism. The secretory effect of DMPP is due to the stimulation of cholinergic nicotinic receptors and the secretion by McN-A-343 via activation of selecive $M_{1}-muscarinic$ receptors in the adrenal gland. It is also thought that the DMPP-evoked secretory effect is much greater than McN-A-343-induced effect.

  • PDF

Antimicrobial effect of calcium hydroxide as an intracanal medicament in root canal treatment: a literature review - Part I. In vitro studies

  • Kim, Dohyun;Kim, Euiseong
    • Restorative Dentistry and Endodontics
    • /
    • v.39 no.4
    • /
    • pp.241-252
    • /
    • 2014
  • The goal of endodontic treatment is the prevention and control of pulpal and periradicular infections. Calcium hydroxide ($Ca(OH)_2$) has been widely used in endodontics as an intracanal medicament to eliminate the remaining microorganisms after chemomechanical preparation. The purpose of this article is to review the antimicrobial properties of $Ca(OH)_2$ as an intracanal medicament in root canal treatment. The first part of this review details the characteristics of $Ca(OH)_2$ and summarizes the results of in vitro studies related to its antimicrobial effect. The antimicrobial effect of $Ca(OH)_2$ results from the release of hydroxyl ions when it comes into contact with aqueous fluids. $Ca(OH)_2$ has a wide range of antimicrobial effects against common endodontic pathogens, but is less effective against Enterococcus faecalis and Candida albicans. The addition of vehicles or other agents might contribute to the antimicrobial effect of $Ca(OH)_2$.