• Title/Summary/Keyword: $Ca^{2+}$ effect

Search Result 3,879, Processing Time 0.031 seconds

Characterization of Microsomal $Ca^{2+}$ Uptake in Tomato Root Tissues (토마토 뿌리조직에서 분리한 마이크로솜의 $Ca^{2+}$ 흡수 특성)

  • Cho, Kwang-Hyun;Kim, Young-Kee
    • Applied Biological Chemistry
    • /
    • v.42 no.2
    • /
    • pp.116-122
    • /
    • 1999
  • In order to characterize the property of $Ca^{2+}$ transport in plant cell, microsomes were prepared from the roots of tomato and microsomal $^{45}Ca^{2+}$ uptake was measured. When 1 mM vanadate, a selective inhibitor of P-type ATPases, 50 mM $NO_3^-$, a specific inhibitor of vacuolar $H^{+}-ATPase$, and both of these inhibitors were treated, the microsomal $^{45}Ca^{2+}$ uptakes were inhibited by 20, 33 and 47%, respectively. The inhibitory effects of these two inhibitors were investigated by using a protonophore, gramicidin. When the chemical gradient of $H^{+}$ was relieved by gramicidin, the uptake was decreased by 30%, implying the presence of $Ca^{2+}/H^+$ antiporter in the microsomal membrane. In the $^{45}Ca^{2+}$ uptake experiment, the effect of gramicidin was independent of vanadate-induced inhibition. However, when the activity of vacuolar $H^{+}-ATPase$ was inhibited by $NO_3^-$, the effect of gramicidin was severely decreased. Meanwhile, thapsigargin, a specific antagonist of ER/SR-type $Ca^{2+}-ATPase$, inhibited the microsomal $^{45}Ca^{2+}$ uptake and the maximum inhibitory effect was obtained at $10\;{\mu}M$. The effect of thapsigargin was blocked by $NO_3^-$ and gramicidin, but not by vanadate. These results imply that vanadate directly inhibits the activity of $Ca^{2+}-ATPase$; however, $NO_3^-$ and thapsigargin block the activity of $Ca^{2+}/H^+$ antiporter by inhibiting the vacuolar $H^{+}-ATPase$. In conclusion, the microsomal $^{45}Ca^{2+}$ uptakes are mediated by two major enzymes, $Ca^{2+}-ATPase$ and $Ca^{2+}/H^+$ antiporter in tomato root tissue.

  • PDF

Effect of sodium on transmembrane calcium movement in the cat ileal longitudinal muscle

  • Rho, Young-Jae;Yun, Il;Kang, Jung-Sook
    • Archives of Pharmacal Research
    • /
    • v.10 no.2
    • /
    • pp.80-87
    • /
    • 1987
  • To get a better insight into the exxistence and the role of a Na-Ca exchange mechanism in smooth muscle, the effect of Na substitution with sucrose on tension development, cellular Ca uptake and $^{45}Ca$ efflux was investigated using isolated cat ileal longitudinal muscle strips. Experimental results were summarized as follows;1) Exposure of the cat ileal longitudinal muscle to Na-free solution induced a contraction, and the magnitude of the contraction increased after incubation of the muscle strips with ouabain ($2{\times10^{-}5}$M) for 1hr. 2) Cellular Ca uptake in Na-free solution increased with an increase in Na content of the Na-loading media, and a linear relationship existed between tissue Na content and cellular Ca uptake for 10 min 3) After tissues were equilibrated in PSS containing $^{45}Ca$ for 2hr, cellular Ca uptake decreased with rising the external Na concentration. 4)Removal of medium Na or inhibition of the Na-K pump decreased the rate of $^{45}Ca$ efflux. These results strongly suggested that Na substitution increases cellular Ca uptake and decreases the rate of $^{45}Ca$ efflux via a Na-Ca exchange mechanism.

  • PDF

Enhancement of $Ca^{2+}$ Spark Occurrence by Murrayafoline-A in Rat Ventricular Myocytes (Murrayafoline-A에 의한 심실 근육세포 $Ca^{2+}$ 스파크 발생의 증가)

  • Kim, Joon-Chul;Cuong, Nguyen Manh;Woo, Sun-Hee
    • YAKHAK HOEJI
    • /
    • v.58 no.4
    • /
    • pp.245-249
    • /
    • 2014
  • Murrayafoline-A (1-methoxy-3-methylcarbazole) is a monomeric carbazole alkaloid found in Murraya euchrestifolia HAYATA and Glycosmis stenocarpa. We have recently shown that murrayafoline-A has positive inotropic effect in isolated rat ventricular myocytes. To know possible mechanisms for the positive inotropic effect of murrayafoline-A we examined the effects of murrayafoline-A on in situ behavior of cardiac $Ca^{2+}$ release units ('$Ca^{2+}$ sparks') and sarcoplasmic reticulum (SR) $Ca^{2+}$ loading using confocal $Ca^{2+}$ imaging method in single rat ventricular myocytes. Murrayafoline-A significantly increased the frequency (events/($10^3{\mu}m^2{\cdot}s$)) of $Ca^{2+}$ sparks in a concentration-dependent manner, with an $EC_{50}$ of $28{\pm}6.4{\mu}M$ and a maximal ~twofold change. The $Ca^{2+}$ content in the SR, measured as caffeine (10 mM)-induced $Ca^{2+}$ transient, was significantly increased by murrayafoline-A (${\approx}$116% and ${\approx}$123% of control at 25 and 100 ${\mu}M$, respectively). In addition, murrayafoline-A significantly increased the fractional $Ca^{2+}$ release, suggesting increase in the efficacy of $Ca^{2+}$ release at given SR $Ca^{2+}$ loading. These results suggest that murrayafoline-A may enhance contractility via increase in $Ca^{2+}$ release from the SR through the ryanodine receptors in ventricular myocytes.

Effect of Ca/P Mole Ration on Mechanical Properties of Alumina added Hydroxyapatite (알루미나를 첨가한 Hydroxyapatite의 기계적 물성에 미치는 Ca/P 몰비의 영향)

  • Lee, D.Y.;Lee, S.K.;Park, H.;Kim, C.E.
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.5
    • /
    • pp.373-382
    • /
    • 1991
  • The effect of Ca/P mole ratio (Ca/P=1.60, 1.67, 1.75) in the initial solution on the mechanical properties of alumina added hydroxyapatite was investigated. Hydroxyapatite was synthesized by precipitation method using Ca(NO3)2$.$4H2O and (NH4)2HPO4 as starting materials and 5 wt% of ${\alpha}$-Al2O3 was added to precipitation solution. The powder was calcined at 800$^{\circ}C$ and sintered at 1,150∼1,400$^{\circ}C$ under water vapor atmosphere. With the increasing of Ca/P mole ration in the initial solution, the amount of tricalcium phosphate formed from the decomposition of hydroxyapatite reduced and the sinterability and mechanical properties were increased. The bending strength and Vickers hardness of the specimen sintered at 1,300$^{\circ}C$ with the Ca/P mole ratio of 1.75 in the initial solution were 230 MPa and 650 kg/$\textrm{mm}^2$, respectively. The improvement of mechanical properties was attributed to not only the effect of Ca/P mole ratio but also the strengthening of sintered body by Al substitution for P ions.

  • PDF

Effect of a Phospholamban Peptide on the Skeletal Sarcoplasmic Reticulum $Ca^{2+}$ Transport (골격근 근장그물 칼슘이동에 대한 Phospholamban 펩타이드의 조절)

  • Kim, Hae-Won;Lee, Hee-Ran
    • The Korean Journal of Pharmacology
    • /
    • v.30 no.1
    • /
    • pp.117-124
    • /
    • 1994
  • Phospholamban is the regulator of $Ca^{2+}-ATPase$ in cardiac sarcoplasmic reticulum(SR). The mechanism of regulation appears to involve inhibition by dephosphorylated phospholamban. Phosphorylation of phospholamban relieves this inhibition. Recently, there has been a report that the cytoplasmic domain (amino acids 1-25) of phospholamban is insufficient to inhibit the $Ca^{2+}$ pump. To explore the domains of phospholamban responsible for $Ca^{2+}-ATPase$ inhibitory activity, we examined the effect of a synthetic phospholamban peptide consisting of amino acid residues 1-25 on $Ca^{2+}$ uptake by reconstituted skeletal SR $Ca^{2+}-ATPase$. The $Ca^{2+}-ATPase$ of skeletal SR was purified and reconstituted in proteoliposomes containing phosphatidylcholine (PC) or phosphatidylcholine: phosphatidylserine (PC:PS). Inclusion of a phospholamban peptide in PC proteoliposomes was associated with significant inhibition of the initial rates of $Ca^{2+}$ uptake at pCa 6.0, and phosphorylation of this peptide by the catalytic subunit of cAMP-dependent protein kinase reversed the inhibitory effect on the $Ca^{2+}$ pump. Similar effects of phospholamban peptide were also observed using PC:PS proteoliposomes. Based on these results, we could conclude that the cytoplasmic domain of phospholamban, containing the phosphorylation sites, by itself is sufficient to inhibit the $Ca^{2+}$ pump of SR.

  • PDF

Effect of Sphingosine-1-Phosphate on Intracellular Free Ca2+ in Cat Esophageal Smooth Muscle Cells

  • Lee, Dong Kyu;Min, Young Sil;Yoo, Seong Su;Shim, Hyun Sub;Park, Sun Young;Sohn, Uy Dong
    • Biomolecules & Therapeutics
    • /
    • v.26 no.6
    • /
    • pp.546-552
    • /
    • 2018
  • A comprehensive collection of proteins senses local changes in intracellular $Ca^{2+}$ concentrations ($[Ca^{2+}]_i$) and transduces these signals into responses to agonists. In the present study, we examined the effect of sphingosine-1-phosphate (S1P) on modulation of intracellular $Ca^{2+}$ concentrations in cat esophageal smooth muscle cells. To measure $[Ca^{2+}]_i$ levels in cat esophageal smooth muscle cells, we used a fluorescence microscopy with the Fura-2 loading method. S1P produced a concentration-dependent increase in $[Ca^{2+}]_i$ in the cells. Pretreatment with EGTA, an extracellular $Ca^{2+}$ chelator, decreased the S1P-induced increase in $[Ca^{2+}]_i$, and an L-type $Ca^{2+}$-channel blocker, nimodipine, decreased the effect of S1P. This indicates that $Ca^{2+}$ influx may be required for muscle contraction by S1P. When stimulated with thapsigargin, an intracellular calcium chelator, or 2-Aminoethoxydiphenyl borate (2-APB), an $InsP_3$ receptor blocker, the S1P-evoked increase in $[Ca^{2+}]_i$ was significantly decreased. Treatment with pertussis toxin (PTX), an inhibitor of $G_i$-protein, suppressed the increase in $[Ca^{2+}]_i$ evoked by S1P. These results suggest that the S1P-induced increase in $[Ca^{2+}]_i$ in cat esophageal smooth muscle cells occurs upon the activation of phospholipase C and subsequent release of $Ca^{2+}$ from the $InsP_3$-sensitive $Ca^{2+}$ pool in the sarcoplasmic reticulum. These results suggest that S1P utilized extracellular $Ca^{2+}$ via the L type $Ca^{2+}$ channel, which was dependent on activation of the $S1P_4$ receptor coupled to PTX-sensitive $G_i$ protein, via phospholipase C-mediated $Ca^{2+}$ release from the $InsP_3$-sensitive $Ca^{2+}$ pool in cat esophageal smooth muscle cells.

Effect of Extracellular $Ca^{2+}$ and $Ca^{2+}$-ATPase on the Acrosome Reaction of Spermatozoa (세포외 $Ca^{2+}$$Ca^{2+}$-ATPase가 정자의 첨체반응에 미치는 영향)

  • Yung-Keun Oh;Jae-Ho Chang;In-Ho Choi;Noh-Pal Jung;Hyung-Cheul Shin;Byoung-Ju Kwak
    • Biomedical Science Letters
    • /
    • v.4 no.1
    • /
    • pp.27-33
    • /
    • 1998
  • This study has been designed in order to examine a physiological role of $Ca^{2+}$ which has been known as an essential factor for capacitation, to confirm whether the enzyme activity of $Ca^{2+}$-ATPase on capacitation is important or not, and to clarify relationship between various levels of the $Ca^{2+}$ concentration and $Ca^{2+}$-ATPase which has been known to be an important factor of the plasma membranes. In the present study applying quercetin, a $Ca^{2+}$-ATPase inhibitor, the enzymatic effect of $Ca^{2+}$-ATPase on capacitation was found to be remarkable: a significant increase of the transition from the original type (type A) to the type B and the type AR of the spermatozoa. This finding suggests that $Ca^{2+}$-ATPase plays an important role in the efflux and the influx of the $Ca^{2+}$ which has been known to be an essential factor the capacitation and acrosome reaction, and that the inhibitory action of the $Ca^{2+}$-ATPase might be a prerequsite step toward the acrosome reaction. The conclusion reached can be deduced as follows: increment of the intracelluar $Ca^{2+}$ concentration occurred by controlling the slope of $Ca^{2+}$ concentration through $Ca^{2+}$-ATPase activities in both the intra- and extracelluar fluid may be an important procedure for capacitation and acrosome reaction, and ultimately for fertilization of the spermatozoa and the ova.

  • PDF

The Effect of Carbon Monoxide on Contraction, Cytosolic $Ca^{2+}$ Level and Ionic Currents in Guinea Pig Ileal Smooth Muscle

  • Kwon, Seong-Chun;Chung, Seung-Soo;Kim, Yun-Suk;Nam, Taick-Sang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.6
    • /
    • pp.479-486
    • /
    • 2000
  • The aim of this study was to clarify the mechanism of the inhibitory action of carbon monoxide (CO) on contraction, by measuring cytosolic $Ca^{2+}$ level $([Ca^{2+}]_i)$ and ionic currents in guinea-pig ileum. CO (10%) inhibited 40 mM KCl-induced contraction and this effect was blocked by ODQ $(1\;{\mu}M),$ a soluble guanylyl cyclase (sGC) inhibitor. CO inhibited the 40 mM KCl-induced contraction without changing $[Ca^{2+}]_i.$ Cumulative addition of KCl induced a graded increase in $[Ca^{2+}]_i$ and muscle tension. In the presence of CO, cumulative addition of KCl induced smaller contraction than in the absence of CO. On the other hand, the increase in $[Ca^{2+}]_i$ induced by cumulative addition of KCl was only slightly decreased in the presence of CO, and the $[Ca^{2+}]_i-tension$ relationship shifted downwards. Using the patch clamp technique with a holding potential of -60 mV, we found that CO had little effect on the peak Ba currents $(I_{Ba})$ when voltage was stepped from -60 mV to 0 mV. In addition, CO showed no effect on the depolarization-activated outward $K^+$ currents in the all potential ranges. We conclude that CO inhibits smooth muscle contraction mainly by decreasing the $Ca^{2+}$ sensitivity of contractile elements via a cGMP-dependent pathway, not by involving L-type $Ca^{2+}$ and outward-potassium currents in guinea-pig ileum.

  • PDF

Forskolin Changes the Relationship between Cytosolic $Ca^{2+}$ and Contraction in Guinea Pig Ileum

  • Han, Koon-Hee;Cheon, Gap-Jin;Yeon, Dong-Soo;Kwon, Seong-Chun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.3
    • /
    • pp.189-194
    • /
    • 2009
  • This study was designed to clarify the mechanism of the inhibitory effect of forskolin on contraction, cytosolic $Ca^{2+}$ level $([Ca^{2+}]_i)$, and $Ca^{2+}$ sensitivity in guinea pig ileum. Forskolin (0.1 nM ${\sim}$ 10 ${\mu}M$) inhibited high $K^+$ (25 mM and 40 mM)- or histamine (3 ${\mu}M$)-evoked contractions in a concentration-dependent manner. Histamine-evoked contractions were more sensitive to forskolin than high $K^+$-evoked contractions. Spontaneous changes in $[Ca^{2+}]_i$ and contractions were inhibited by forskolin (1 ${\mu}M$) without changing the resting $[Ca^{2+}]_i$. Forskoln (10 ${\mu}M$ ) inhibited muscle tension more strongly than $[Ca^{2+}]_i$ stimulated by high $K^+$, and thus shifted the $[Ca^{2+}]_i$-tension relationship to the lower-right. In histamine-stimulated contractions, forskolin (1 ${\mu}M$) inhibited both $[Ca^{2+}]_i$ and muscle tension without changing the $[Ca^{2+}]_i$-tension relationship. In ${\alpha}$-toxin-permeabilized tissues, forskolin (10 ${\mu}M$) inhibited the 0.3 ${\mu}M$ $Ca^{2+}$-evoked contractions in the presence of 0.1 mM GTP, but showed no effect on the $Ca^{2+}$-tension relationship. We conclude that forskolin inhibits smooth muscle contractions by the following two mechanisms: a decrease in $Ca^{2+}$ sensitivity of contractile elements in high $K^+$-stimulated muscle and a decrease in $[Ca^{2+}]_i$ in histamine-stimulated muscle.

Lysophosphatidylcholine Attenuates Endothelium-dependent Relaxation Responses through Inhibition of ACh-induced Endothelial $[Ca^{2+}]_i$ Increase

  • Kwon, Seong-Chun;Lee, Yong-Ho;Nam, Taick-Sang;Ahn, Duck-Sun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.1
    • /
    • pp.25-30
    • /
    • 2006
  • Lysophosphatidylcholine (LPC), which accumulates in atherosclerotic arteries, has been reported to inhibit endothelium-dependent relaxation (EDR) in many different species. However, the underlying mechanism of LPC-induced inhibition of EDR is still uncertain. In the present study, we measured simultaneously both isometric tension and cytosolic free $Ca^{2+}$ ($[Ca^{2+}]_i$) in rabbit carotid strips, and examined the effect of LPC on tension and $[Ca^{2+}]_i$. In carotid strips with intact-endothelium, high $K^+$ (70 mM) increased both tension and $[Ca^{2+}]_i$, and cumulative addition of acetylcholine (ACh) from 0.1 to $10{\mu}M$ induced dose dependent increase of $[Ca^{2+}]_i$ with concomitant relaxation. In the presence of L-NAME (0.1 mM), ACh increased $[Ca^{2+}]_i$ without affecting the amplitude of high $K^+-induced$ tension. These ACh-induced change of $[Ca^{2+}]_i$ and tension was abolished by removal of endothelium or 10 nM 4-DAMP (muscarinic receptor antagonist) pretreatment. Pretreatment of LPC ($10{\mu}M$) inhibited ACh ($10{\mu}M$)-induced change of tension and $[Ca^{2+}]_i$ in endothelium-intact carotid artery. On the other hand, LPC had no effect on ACh-induced change of tension and $[Ca^{2+}]_i$ in endothelium denuded artery. In $Ca^{2+}$-free external solution, ACh transiently increased $[Ca^{2+}]_i$, and pretreatment of LPC significantly inhibited ACh-induced transient $[Ca^{2+}]_i$ change. Based on the above results, it may be concluded that LPC inhibits the ACh-induced $[Ca^{2+}]_i$ change through inhibition of $Ca^{2+}$ mobilization in vascular endothelial cells, resulting in decreased production of NO and concomitant inhibition of endotheliumdependent vascular relaxation.