• Title/Summary/Keyword: $Ca^{2+}$ Influx

Search Result 314, Processing Time 0.028 seconds

Alteration of the Activated Responses in Platelet-Activating Factor-Stimulated Neutrophils by Protein Kinase Inhibitors (Protein Kinase 억제제 첨가 후 Platelet-Activating Factor에 의하여 자극된 호중구반응의 변경)

  • Lee, Kang-Kun;Ko, Ji-Young;Ham, Dong-Suk;Shin, Yong-Kyoo;Lee, Chung-Soo
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.1
    • /
    • pp.103-112
    • /
    • 1996
  • Roles of protein kinase C and protein tyrosine kinase in the activation of neutrophil respiratory burst, degranulation and elevation of cytosolic $Ca^{2+}$ in platelet-activating factor (PAF)-stimulated neutrophils were investigated. Superoxide and $H_2O_2$ production and myeloperoxidase and acid phosphatase release in PAF-stimulated neutrophils were inhibited by protein kinase C inhibitors, staurosporine and H-7 and protein tyrosine kinase inhibitors, genistein and tyrphostin. The PAF-induced elevation of $[Ca^{2+}]_i$ in neutrophils was inhibited by staurosporine, genistein and methyl-2,5-dihydroxycinnamate. Staurosporine inhibited both intracellular $Ca^{2+}$ release and $Mn^{2+}$ influx in PAF-stimulated neutrophils. Genistein and methyl-2,5-dihydroxycinnamate inhibited $Mn^{2+}$ influx induced by PAF, whereas their effects on intracellular $Ca^{2+}$ release were not detected. In neutrophils preactivated by PMA, the stimulatory effect of PAF on the elevation of $[Ca^{2+}]_i$ was reduced. Protein kinase C and protein tyrosine kinase may be involved in respiratory burst, lysosomal enzyme release and $Ca^{2+}$ mobilization in PAF-stimulated neutrophils. The elevation of $[Ca^{2+}]_i$ appears to be accomplished by intracullular $Ca^{2+}$ release and $Ca^{2+}$ influx which are differently regulated by protein kinases. Preactivation of protein kinase C appears to attenuate the stimulatory action of PAF on intracellular $Ca^{2+}$ mobilization.

  • PDF

Mechanisms for the Initiation of Sperm Motility (정자운동 개시 기구)

  • Kho Kang Hee;Kang Kyoung Ho;Chang Young Jin
    • Development and Reproduction
    • /
    • v.7 no.2
    • /
    • pp.81-88
    • /
    • 2003
  • Initiation and activation of sperm motility are prerequisite processes for the contact and fusion of male and female gametes at fertilization. The phenomena are under the regulation of CAMP and $Ca^{2+}$ in vertebrates and invertebrates. Mammalian sperm requires $Ca^{2+}$and cyclic AMP for the activation of sperm motility. Cell signaling for the initiation and activation of sperm motility has been well studied in the ascidians, Ciona intestinalis and C. savignyi and salmonid fishes. In Ciona, whose cell signaling for activation of sperm motility has been established, the sperm-activating and -attracting factor released from unfertilized egg requires extracellular $Ca^{2+}$ for activating sperm motility and eliciting chemotactic behavior of the activated sperm toward the egg. On the other hand, the cyclic AMP-dependent phosphorylation of protein is essential for the initiation of sperm motility in salmonid fishes. A decrease in the environmental Ti concentration surrounding the spawned sperm causes a li efflux and $Ca^{2+}$ influx through the specific $K^{+}$ channel and dihydropyridine-sensitive L-/T- type $Ca^{2+}$ channel, respectively, thereby leading to the membrane hyperpolarization and $Ca^{2+}$ influx. The membrane hyperpolarization synthesizes cyclic AMP, which triggers the luther Process of cell signaling, i.e., cyclic AMP-dependent protein phosphorylation, to initiate sperm motility in salmond fishes.almond fishes.

  • PDF

Effects of External $Ca^{2+}$ ana the Inhibition of Na-pump on the Vanadate-induced Contraction in the Isolated Human and Rat Uterine Smooth Muscle (사람 및 흰쥐의 자궁근에서 Vanadate에 의한 수축에 미치는 외부 Calcium 및 Na-pump억제의 영향)

  • Jung, Jin-Sub;Han, Bok-Ki;Woo, Jae-Suk;Lee, Sang-Ho
    • The Korean Journal of Physiology
    • /
    • v.18 no.2
    • /
    • pp.125-137
    • /
    • 1984
  • The effects of external $Ca^{2+}$ ana the inhibition of Na-pump on vanadate-induced contraction in isolated human and rat uterine smooth muscle were studied and the following results were observed. 1) Vanadate induced contraction in rat uterine muscle and showed maximal contraction at concentration of $5{\times}10^{-4}$M, and the contractile response to vanadate was more sensitive in human than rat uterine muscle. 2) Vanadate-induced contraction was not completely inhibited by $Ca^{2+}$ removal from PSS and the response to $Ca^{2+}$ removal was more sensitive in human than rat uterine muscle. 3) Vanadate-induced contraction decreased with increasing concentration of verapamil, but even in the presence of $3{\times}10^{-5}M$ verapamil which inhibited 100 K-induced contraction completely. about 40% of maximal contraction remained, and its amplitude was similar to that of contraction in $Ca^{2+}$-free solution. 4) Vanadate-induced contraction was increased by the inhibition of Na-pump and this increase also could be observed in the presence of $3{\times}10^{-5}M$ verapamil. 5) After pretreatment with $Ca^{2+}$-free PSS containing ouabain Vanadate-induced contraction was not increased, but the contractile response of these tissues to the addition of external $Ca^{2+}$ was remarkably increased in the presence of vanadate. 6) $3{\times}10^{-5}$M verapamil inhibited vanadate-induced $Ca^{45}$ influx completely, but after pretreatment with ouabain vanadate could induce remarkable $Ca^{45}$ influx even in the presence of verapmil. 7) With increasing the time of pretreatment with ouabain or $K^+$-free solution, the degree of increase in contraction by vanadate was more remarkable. 8) $10^{-4}M$ papaverine stowed a considerable inhibition of the increase in the vanadate-induced contraction by pretreatment with ouabain. 9) Acetylcholine-induced contraction increased with lengthening the duration of Na-pump inhibition even in the presence of verapamil. Considering above results it seems that the uterine muscle of human is more sensitive to vanadate than that of rat, and both internal and external $Ca^{2+}$ is utilized in vanadate·induced contraction. In the case of Na-pump inhibition several smooth muscle contracting agents seems to induce $Ca^{2+}$ influx which is not inhibited by verapamil. This $Ca^{2+}$ influx seems to be inhibited by papaverine and to be associated with membrane potential, although its precise characteristics is not certain.

  • PDF

Distinct Cellular Calcium Metabolism in Radiation-sensitive RKO Human Colorectal Cancer Cells

  • Kim, Yun Tai;Jo, Soo Shin;Park, Young Jun;Lee, Myung Za;Suh, Chang Kook
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.6
    • /
    • pp.509-516
    • /
    • 2014
  • Radiation therapy for variety of human solid tumors utilizes mechanism of cell death after DNA damage caused by radiation. In response to DNA damage, cytochrome c was released from mitochondria by activation of pro-apoptotic Bcl-2 family proteins, and then elicits massive $Ca^{2+}$ release from the ER that lead to cell death. It was also suggested that irradiation may cause the deregulation of $Ca^{2+}$ homeostasis and trigger programmed cell death and regulate death specific enzymes. Thus, in this study, we investigated how cellular $Ca^{2+}$ metabolism in RKO cells, in comparison to radiation-resistant A549 cells, was altered by gamma (${\gamma}$)-irradiation. In irradiated RKO cells, $Ca^{2+}$ influx via activation of NCX reverse mode was enhanced and a decline of $[Ca^{2+}]_i$ via forward mode was accelerated. The amount of $Ca^{2+}$ released from the ER in RKO cells by the activation of $IP_3$ receptor was also enhanced by irradiation. An increase in $[Ca^{2+}]_i$ via SOCI was enhanced in irradiated RKO cells, while that in A549 cells was depressed. These results suggest that ${\gamma}$-irradiation elicits enhancement of cellular $Ca^{2+}$ metabolism in radiation-sensitive RKO cells yielding programmed cell death.

Effect of $Ca^{++}$ on High K-induced Contracture of Isolated Frog Ventricular Muscle (적출 심근의 칼륨경축에 대한 칼슘이온 효과)

  • Choi, Youn-Baik;Kim, Ki-Whan
    • The Korean Journal of Physiology
    • /
    • v.20 no.1
    • /
    • pp.31-41
    • /
    • 1986
  • The sufficient myoplasmic $Ca^{++}$ to react with the contractile proteins is necessary to induce contraction of a cardiac muscle. These $Ca^{++}$ for the production of muscle contraction are supplied from the three recognized $Ca^{++}$ sources; internal $Ca^{++}$ release via the sarcoplasmic reticulum(SR), $Ca^{++}$ influx through a gated Ca-channel in the membrane as a Isi, and $Ca^{++}$ transport by the mechanism of Na/ca exchange. However, it is still controversial which $Ca^{++}$ sources act as a main contributor for myoplasmic $Ca^{++}$, Therefore, this study was undertaken in order to examine the $Ca^{++}$ sources for the contraction of frog ventricle. There is evidence that the SR is sparse in frog ventricular fibers, and that T-tubules are absent. Isolated ventricular strips of frog, Rana nigromaculata, were used in this experiment. Isometric tension was recorded by force transducer, and membrane potentials of ventricular muscles were measured through the intracellular glass microelectrodes, which were filled with 3M KCI and had resistance of $30{\pm}50M{\Omega}$. All experiments were performed at room temperature in a tris·buffered Ringer solution which was aerated with 100% $O_2$. Isotonic high K, low Na solution was used to induce K-contracture, K-contracture appeared at the concentration of 20 to 30mM-KCI and was potentiated in parallel with the increase in KCI concentration. The contracture had two components: an initial rapid phasic and a subsequent slow tonic contractile responses. Membrane Potentials measured at normal Ringer solution(2.5mM KCI) was -90 to -100 mV, and decreased linearly as the KCI concentration increased; -55mV at 20mM.KCI, -45mV at 30 mM.KCI, -30 mY at 50 mM.KCI, and -12 mV at 100 mM.KCI. K-contracture was evoked firstly at the membrane potential of -45 mV. The contracture was potentiated by the increase of bathing extracellular $Ca^{++}$ concentration. However, in the absence of $Ca^{++}$ the contracture was almost not induced by 50 mM.KCI solution. Caffeine(20mM) in normal Ringer solution, which is known to release $Ca^{++}$ from SR without substantial effects on the $Ca^{++}$ fluxes across the surface membrane, did not affect membrane potential and also not initiate contracture, but the caffeine in 20 mM-KCI Ringer solution produced a contracture. Above results suggest that the main $Ca^{++}$ source for the K·contracture of frog ventricle is $Ca^{++}$ influx through the voltage-dependent Ca-channel, and that in the K-contracture at the concentration of 100 mM-KCI, the mechanism of Na/ca exchange also partly contributs, in addition to the $Ca^{++}$ influx.

  • PDF

Inhibition of collagen-induced platelet aggregation by Sanggenon N via the Ca2+ signaling pathway

  • Hyuk-Woo Kwon
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.4
    • /
    • pp.463-469
    • /
    • 2022
  • Cudrania tricuspidata (C. tricuspidata), a medicinal plant widely employed throughout Asia in ethnomedicine, has various bioactive properties, including antidiabetic, antiobesity, antitumor, and anti-inflammatory activities. In addition, the C. tricuspidata root extract reportedly inhibits platelet aggregation. Therefore, we focused on the active substances present in the C. tricuspidata extract. Sanggenon N (SN) is a flavonoid found in the root bark of C. tricuspidata. In the present study, we examined the inhibitory effects of SN on platelet aggregation, phosphoproteins, thromboxane A2 generation, and integrin αIIbβ3 activity. SN inhibited collagen-induced human platelet aggregation in a dose-dependent manner without cytotoxicity. Furthermore, SN suppressed Ca2+ mobilization and influx through associated signaling molecules, such as inositol 1, 4, 5-triphosphate receptor I (Ser1756), and extracellular signal-regulated kinase. In addition, SN inhibited thromboxane A2 generation and associated signaling molecules, including cytosolic phospholipase A2 and mitogen-activated protein kinase p38. Finally, SN could inhibit integrin (αIIb/β3) activity by regulating vasodilator-stimulated phosphoprotein and Akt. Collectively, SN possesses potent antiplatelet effects and is a potential therapeutic drug candidate to prevent platelet-related thrombosis and cardiovascular disease.

Induces Vasodilatation of Rat Mesenteric Artery in vitro Mainly by Inhibiting Receptor-Mediated $Ca^{2+}$ -Influx and $Ca^{2+}$ -Release

  • Cao Yong-Xiao;Zheng Jian-Pu;He Jian-Yu;Li Jie;Xu Cang-Bao;Edvinsson Lars
    • Archives of Pharmacal Research
    • /
    • v.28 no.6
    • /
    • pp.709-715
    • /
    • 2005
  • The purpose of this study was to investigate the effect of atropine on peripheral vasodilation and the mechanisms involved. The isometric tension of rat mesenteric artery rings was recorded in vitro on a myograph. The results showed that atropine, at concentrations greater than 1$\mu$M, relaxed the noradrenalin (NA)-precontracted rat mesenteric artery in a concentration-dependent manner. Atropine-induced vasodilatation was mediated, in part, by an endothelium-dependent mechanism, to which endothelium-derived hyperpolarizing factor may contribute. Atropine was able to shift the NA-induced concentration-response curve to the right, in a non-parallel manner, suggesting the mechanism of atropine was not mediated via the ${\alpha}_1$-adrenoreceptor. The $\beta$-adrenoreceptor and ATP sensitive potassium channel, a voltage dependent calcium channel, were not involved in the vasodilatation. However, atropine inhibited the contraction derived from NA and $CaCl_2$ in $Ca^{2+}$-free medium, in a concentration dependent manner, indicating the vasodilatation was related to the inhibition of extracellular $Ca^{2+}$ influx through the receptor-operated calcium channels and intracellular $Ca^{2+}$ release from the $Ca^{2+}$ store. Atropine had no effect on the caffeine-induced contraction in the artery segments, indicating the inhibition of intracellular $Ca^{2+}$ release as a result of atropine most likely occurs via the IP3 pathway rather than the ryanodine receptors. Our results suggest that atropine-induced vasodilatation is mainly from artery smooth muscle cells due to inhibition of the receptor-mediated $Ca^{2+}$-influx and $Ca^{2+}$-release, and partly from the endothelium mediated by EDHF.

The Involvement of Protein Kinase C and Tyrosine Kinase in Vanadate-induced Contraction

  • Sim, Sang-Soo;Kim, Chang-Jong
    • Archives of Pharmacal Research
    • /
    • v.21 no.3
    • /
    • pp.315-319
    • /
    • 1998
  • Gastric smooth muscle of cats was used to investigate the involvement of protein kinase in vanadate-induced contraction. Vanadate caused a contraction of cat gastric smooth muscle in a dose-dependent manner. Vanadate-induced contraction was totally inhibited by 2 mM EGTA and 1.5 mM $LACI_3$ and significantly inhibited by $10\mu$M verapamil and $1\mu$M nifedipine, suggesting that vanadate-induced contraction is dependent on the extracellular $Ca^{2+}$ concentration, and the influx of extracellular $Ca^{2+}$ was mediated through voltage-dependent $Ca^{2+}$ channel. Both protein kinase C inhibitor and tyrosine kinase inhibitor significantly inhibited the vanadate-induced contraction and the combined inhibitory effect of two protein kinase inhibitors was greater than that of each one. But calmodulin antagonists did not have any influence on the vanadate-induced contraction. On the other hand, both forskolin ($1\mu$M) and sodium nitroprusside ($1\mu$M) significantly inhibited vanadate-induced contraction. Therefore, these results suggest that both protein kinase C and tyrosino kinase are involved in the vanadate-induced contraction which required the influx of extracellular $Ca^{2+}$ in cat gastric smooth muscle, and that the contractile mechanism of vanadate may be different from that of agonist binding to its specific receptor.

  • PDF

Effect of Gonadotropin on $Ca^{++}$ Uptake in Follicle-Enclosed Mouse Oocytes Cultured in Vitro (배양된 생쥐여포에서 $Ca^{++}$ Uptake에 대한 Gonadotropin의 영향)

  • Bae, In-Ha;Kang, Shin-Hae
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.18 no.2
    • /
    • pp.153-162
    • /
    • 1991
  • The present study was undertaken to clarify the role of calcium ion as a factor for the maturation of follicle-enclosed mouse oocytes. Follicles were isolated with two sharp needles under a stereomicroscope from mouse(ICR) ovaries which were treated PMSG 5 IU 45 hours previously. Isolated follicles were cultured for 14-16 hours in an organ culture system at $37^{\circ}C$, 5% $CO_2$ in air and in a 100% humidified incubator by treatment of hCG, EDTA and $^{45}Ca^{++}$. Culture medium was Modified Hank's Balanced Salt Sol. (MHBS) and addition of hCG (human chorionic gonadotropin) was made into two doses level 0.4 IU and 0.8IU from the stock sol. and also $^{45}Ca^{++}$ was treated in the culture medium. To explain the role of calcium, calcium chelating agent EDTA was treated to the culture of the mouse follicle-enclosed oocytes. Two observations were made in the present study; nucleus phase and $^{45}Ca^{++}$ uptake into the oocyte. HCG induced oocyte maturation in the follicle about two folds as much as the control group, whereas there is no difference in oocyte maturation between 0.4 IU and 0.8 IU of hCG. Optimum level of hCG seems to be 0.4 IU/ml in the mouse follicle culture. HCG stimulated $^{45}Ca^{++}$ uptake into the oocyte of the follicles by two folds. $^{45}Ca^{++}$ uptake in the control group is about 2.5 folds in comparison of the EDTA(1.71mM) treated group. However, calcium uptake in the EDTA treated groups tends to increase depending on the decrease of EDTA concentration. These observations suggest that firstly, hCG stimulates maturation of the oocyte of the follicle, secondly, $Ca^{++}$ influx is induced by hCG and thirdly, $Ca^{++}$ influx by the treatment of EDTA decreases as a dosage-dependent process. This $Ca^{++}$ uptake may take place by the changes of permeability which was induced by hCG treatment. That is, $Ca^{++}$ influx may trigger the resumption of oocyte maturation. It is further necessary in the future study how this $Ca^{++}$ uptake is induced by hCG and increases permeability of the follicle and oocyte.

  • PDF

Effects of (lR,9S)-($\beta$)-Hydrastine on Intracellular Calcium Concentration in PC12 Cells

  • Kim, Yu-Mi;Lee, Jae-Joon;Jin, Chun-Mei;Yang, Yoo-Jung;Yin, Shou-Yu;Kang, Min-Hee;Lee, Myung-Koo
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.97.2-97.2
    • /
    • 2003
  • (1R,9S)-(${\beta}$)-Hydrastine (HS) at 10-50 ${\mu}$M has been proven to have an inhibitory effect on dopamine biosynthesis in PC12 cells by the inhibition of tyrosine hydroxylase (TH) activity and TH gene expression. In the present study, therefore, the effects of HS on the basal and K$\^$+/-induced dopamine release, and Ca$\^$2+/ influx induced by high K$\^$+/ and caffeine in PC12 cells were investigated. The dopamine release by high K$\^$+/ (56 mM) was inhibited by co-incubation of 20 ${\mu}$M HS. Application of HS also significantly reduced the magnitude of the maintained Ca$\^$2+/ influx induced by K$\^$+/ depolarization. (omitted)

  • PDF