• 제목/요약/키워드: $Ca^{++}$uptake

Search Result 471, Processing Time 0.029 seconds

Effect of High-Molecular-Weight Poly-$\gamma$-Glutamic Acid from Bacillus subtilis (chungkookjang) on Ca Solubility and Intestinal Absorption

  • PARK CHUNG;CHOI YOON-HO;SHIN HYUN-JIN;POO HARYOUNG;SONG JAE JUN;KIM CHUL-JOONG;SUNG MOON-HEE
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.4
    • /
    • pp.855-858
    • /
    • 2005
  • The bioavailability of Ca is currently one of the most important topics in nutrition research and is correlated with gastrointestinal solubility. Thus, to increase the solubility of calcium, this study was undertaken to examine the effect of $\gamma$-PGA on intestinal Ca solubility. The calcium solubility increased when the amount of $\gamma$-PGA was increased, due to the inhibition of the formation of an insoluble Ca complex with phosphate. Therefore, when $\gamma$-PGA-500 (avg. MW 5,000 kDa) was added at 0.5 mg/ml, $75\%$ of the total Ca was soluble. The amount of soluble Ca uptake in the small intestine was investigated using Balb/c mice as an animal model system. The soluble Ca uptake in the mice orally administered with $\gamma$-PGA-500 (avg. MW 5,000 kDa) was significantly higher than that in the $\gamma$-PGA-l00 (avg. MW 1,000 kDa)-administered mice (P<0.05). Accordingly, these results strongly support the notion that the molecular size of $\gamma$-PGA is correlated with Ca solubility. The effects of other factors, such as casein phosphopeptide and vitamin D, on intestinal Ca absorption have also previously been investigated. Therefore, it is hoped that the present observations will help clarify the role of $\gamma$-PGA in Ca solubility and its industrial application as an additive.

Effects of Bay K, cAMP and Isoprenaline on the Na-Ca Exchange Current of Single Rabbit Atrial Cells (토끼 심방근에서 Na-Ca 교환 전류에 대한 Bay K, cAMP, Isoprenaline 효과)

  • Ho, Won-Kyung;Earm, Yung-E
    • The Korean Journal of Physiology
    • /
    • v.24 no.2
    • /
    • pp.377-388
    • /
    • 1990
  • Ca movements during the late plateau phase in rabbit atrium implicate Na-Ca exchange. In single atrial cells isolated from the rabbit the properties of the inward current of Na-Ca exchange were investigated using the whole cell voltage clamp technique. The inward currents were recorded during repolarization following brief 2 ms depolarizing pulse to +40 mV from a holding potential of -70 mV. Followings are the results obtained: 1) When stimulated every 30 sec, the inward currents were activated and reached peak values $6{\sim}12\;ms$ after the beginning of depolarizing pulse. The mean current amplitude was 342 pA/cell. 2) The current decayed spontaneously from the peak activation and the timecourse of the relaxation showed two different phases: fast and slow phase. 3) The recovery of the inward current was tested by paired pulse of various interval. The peak current recovered exponentialy with a time course similar to that of Ca current recovery. 4) Relaxation timecourse was also affected by pulse interval and time constant was reduced almost linearly according to the decrease of pulse interval between 30 sec and 1 sec. 5) The peak inward current was increased by long prepulse stimulation, Bay K, isoprenaline or c-AMP. 6) The relaxation time constant of the inward current was prolonged by Bay K or c-AMP, and shortened by isoprenaline. From the above results, it could be concluded that increase of the calcium current potentiates and prolongs intracellular calcium transients, while shortening of the timecourse by isoprenaline or short interval stimulations might be due to the facilitation of Ca uptake by SR.

  • PDF

New CPS-PPEES blend membranes for CaCl2 and NaCl rejection

  • Chitrakar, Hegde;Arun, M. Isloor;Mahesh, Padaki;Ahmad, Fauzi Ismail;Lau, W.J.
    • Membrane and Water Treatment
    • /
    • v.3 no.1
    • /
    • pp.25-34
    • /
    • 2012
  • Carboxylated polysulfone (CPS), poly (1,4-phenylene ether ethersulfone) (PPEES), membranes were prepared and used for the separation of NaCl and $CaCl_2$, in efficient way with less energy consumption. In this work, nanofiltration and reverse osmosis membranes were employed to the salt rejection behavior of the different salt solutions. The influence of applied pressure (1-12 bar), on the membrane performance was assessed. In CM series of membranes, $CM_1$ showed maximum of 97% water uptake and 36% water swelling, whereas, $CM_4$ showed 75% water uptake and 28% water swelling. In RCM series, $RCM_1$ showed 85% water uptake and 32% water swelling whereas, in $RCM_4$ it was 68% for water uptake and 20% for water swelling. Conclusively reverse osmosis membranes gave better rejection whereas nanofiltration membrane showed enhanced flux. CM1 showed 58% of rejection with 12 L/($m^2$ h) flux and $RCM_1$ showed 55% of rejection with 15 L/($m^2$ h) flux for 0.1 wt.% NaCl solution. Whereas, in 0.1 wt.% $CaCl_2$ solution, membrane $CM_1$ showed 78% of rejection with 12 L/($m^2$ h) flux and $RCM_1$ showed 63% rejection with flux of 9 L/($m^2$ h).

Studies on the ATpase Activity , Relaxing Activity and Calcium Uptake of Rabbit Skeletal Muscle Microsomes (골격근 microsome 의 ATMase 의 활성, 골이이오나용, 및 Ca 흡수작용에 관한 연구)

  • 하두봉
    • The Korean Journal of Zoology
    • /
    • v.10 no.2
    • /
    • pp.1-8
    • /
    • 1967
  • 토끼의 골격근 homogenate에서 23,000$\times$G, 60 분간의 원심분리와 얻은 근 microsome의 ATPase 활성, 근수축에 대한 이완작용, 및 Ca 의 흡수작용을 여러 가지 조건에서 측정하였다. ATPase 활성은 Ca++ Mg++ 양 이온의 존재에 의하여 활성화되며 , 5 mM Mg++ 의 존재하에서는 Ca++ 의 최적농도는 0.1mM이다. Oxalate의 존재하에서는 1 mM 의 Ca++ 이 최적농도이므로 oxalate의 작용은 불용성 Ca-oxalate의 작용은 불용성 Ca-oxalate를 microsome vesicle so 및 medium 내에 침전시켜 유리 Ca++ 농도를 저하시키는 것이라고 생각된다. Microsome의 이완작용은 조제후 120 시간까지 시간에 따라 감소되어 가나, 그이 ATPase 활성은 거의 변화가 없는 것으로 보아 Ca++ + Mg++ -의존성 ATPase 는 이완작용에는 직접 관련이 없는 것으로 해석된다. Oxalatedmlwhswo는 microsome의 Ca++ 흡수량을 현저히 증대시키며 동시에 흡수포화에 도달하는 시간을 지연시킨다. Oxalate의 이러한 효과도 Ca-oxalate의 형성에 기인하는 것으로 해석된다. Microsome 내에 축적되는 Ca 의 량은 ATP 농도가 커질수록 많아진다. 그러나 축적된 Ca 의 량과 ATP 농도사이에 화학정량론적 관계는 없는 것같다.

  • PDF

Expression of lac and gal operons in Zymomonas mobilis

  • Cho, Dong-Wuk;Rogers, Peter L.;Delaney, Stephen F.
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.2
    • /
    • pp.155-159
    • /
    • 1994
  • Two Zymomonas mobilis strains (ZM63 and ZM6307), containing both lactose and galactose operons, were constructed. $\beta$-Galactosidase and galactokinase assays indicated that both operons were expressed in both strains. The transport systems available for lactose uptake by Zymomonas mobilis were investigated using $^{14}C$-labelled lactose. After the outer membrane, which was considered to be a possible barrier to lactose uptake, was disrupted by treatment with EDTA and $Ca^{2+}$ ions, some increase in lactose uptake was observed in ZM6306 ($lac^+$) and ZM6307 ($lac^+\;gal^+$), but not in the parent, ZM6. This suggested that the outer membrane of Zymomonas mobilis acts as a barrier to lactose uptake to some degree, and also that the lactose permease is operational in Zymomonas mobilis.

  • PDF

Multiple Actions of Dimethylsphingosine in 1321N1 Astrocytes

  • Lee, Yun-Kyung;Kim, Hyo-Lim;Kim, Yu-Lee;Im, Dong-Soon
    • Molecules and Cells
    • /
    • v.23 no.1
    • /
    • pp.11-16
    • /
    • 2007
  • N,N-dimethyl-D-erythro-sphingosine (DMS) is an N-methyl derivative of sphingosine and an inhibitor of protein kinase C (PKC) and sphingosine kinase (SK). In the present study, we examined the effects of DMS on intracellular $Ca^{2+}$ concentration, pH, and glutamate uptake in human 1321N1 astrocytes. DMS increased intracellular $Ca^{2+}$ concentration and cytosolic pH in a concentration-dependent manner. Pretreatment of the cells with the $G_{i/o}$ protein inhibitor PTX and the PLC inhibitor U73122 had no obvious effect. However, removal of extracellular $Ca^{2+}$ with the $Ca^{2+}$ chelator EGTA or depletion of intracellular $Ca^{2+}$ stores with thapsigargin impeded the DMS-induced increase of intracellular $Ca^{2+}$ concentration. Pretreatment of cells with $NH_4Cl$ or monensin reduced the DMS-induced $Ca^{2+}$ increase. However, inhibition of the DMS-induced $Ca^{2+}$ increase with BAPTA did not influence the DMS-induced pH increase. DMS also inhibited glutamate uptake by the 1321N1 astrocytes in a concentration-dependent manner. It also increased intracellular $Ca^{2+}$ and pH in PC12 neuronal cells. Our observations on the effects of DMS on 1321N1 astrocytes and PC12 neuronal cells point to a physiological role of DMS in the brain.

Physiological Changes in the Cichlid Fish Maylandia lombardoi according to Various Calcium Concentrations in Rearing Water (환경수 내의 다양한 Ca2+ 농도에 따른 시클리드(Maylandia lombardoi)의 생리적 변화)

  • Moon, Hye-Na;Yeo, In-Kyu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.49 no.2
    • /
    • pp.184-189
    • /
    • 2016
  • We investigated physiological changes in the freshwater cichlid, fish Maylandia lombardoi in response to different calcium concentrations in rearing water. Four different calcium concentrations (0, 2, 4 and 8 mM) were prepared in rearing water by the addition of ionized calcium (CaO) to examine the effect of various calcium concentrations in rearing water on physiological changes in the cichlid fish, M. lombardoi. Total calcium concentrations in plasma and body increased in a calcium concentration-dependent manner and reached the maximum at 8-mM calcium concentration. Stress-related cortisol was significantly decreased in the 8-mM group compared to the control group (0 mM). Lysozyme activity also significantly decreased in the 8-mM group. These results suggest that CaO in rearing water increases calcium uptake in fish and affects the body by decreasing stress and improving immunity in fish.

Studies on the Uptake of $Sr^{90}$ with the Growth of Rice Plant (수도(水稻) 생육(生育)에 따른 $Sr^{90}$ 흡수(吸收)에 관한 연구(硏究))

  • Kim, Jae-Sung;Lim, Soo-Kil;Lee, Young-Il
    • Korean Journal of Environmental Agriculture
    • /
    • v.7 no.2
    • /
    • pp.92-95
    • /
    • 1988
  • A Pot experiment was conducted to study the uptake of $Sr^{90}$ by rice plants in five different types of paddy soils and its distribution in these plants as a function of the age of the rice. The uptake of $Sr^{90}$ by rice plants increased with the growth of the aboveground mass of the plants from the planting period, but $Sr^{90}$ content per unit of dry matter decreased as the organic mass of the plants increased during the vegetative growing period, except for the time of ripening. The content of Ca and $Sr^{90}$ in rice plants was higher in the stem and leaves than in grain parts in general. However, Ca content was decreased in the stem and increased in the grain part with the growth of the rice plant ; but $Sr^{90}$ content was increased in the leaves and decreased in the stem and grain parts.

  • PDF

The Study on $Na^+-Ca^{++}$ Exchange in Heart Mitochondria (심근 Mitochondria의 $Na^+-Ca^{++}$교환에 관한 연구)

  • Shin, Sang-Goo;Kim, Myung-Suk;Lim, Jung-Kyoo
    • The Korean Journal of Pharmacology
    • /
    • v.18 no.2
    • /
    • pp.89-102
    • /
    • 1982
  • The $Na^+-and\;K^+-induced\;Ca^{++}$ release was measured isotopically by millipore filter technique in pig heart mitochondria. With EGTA-quenching technique, the characteristics of mitochondrial $Ca^{++}-pool$ and the sources of $Ca^{++}$ released from mitochondria by $Na^+\;or\;K^+$ were analyzed. The mitochondrial $Ca^{++}-pool$ could be distinctly divided into two components: internal and external ones which were represented either by uptake through inner membrane, or by energy independent passive binding to external surface of mitochondria, respectively. In energized mitochondria, a large portion of $Ca^{++}$was transported into internal pool with little external binding, while in de-enerigzed state, a large portion of transported $Ca^{++}$ existed in the external pool with limited amount of $Ca^{++}$ in the internal pool which was possibly transported through the $Ca^{++}-carrier$ present in the inner membrane. $Na^+$ induced the $Ca^{++}$ release from both internal pool and external pool and external binding pool of mitochondria. In contrast, $K^+$ did not affect $Ca^{++}$ of the internal pool, but, displaced $Ca^{++}$ bound to external surface of the mitochondria. When the $Ca^{++}-reuptake$ was blocked by EGTA, the $Ca^{++}$ release from the internal pool by $Na^+$ was rapid; the rate of $Ca^{++}-efflux$ appeared to be a function of $[Na^+]^2$ and about 8mM $Na^+$ was required to elicit half-maximal velocity of $Ca^{++}-efflux$. So it was revealed that $Ca^{++}-efflux$ velocity was particulary sensitive to small changes of the $Na^+$ concentration in physiological range. Energy independent $Ca^{++}-binding$ sites of mitochondrial external surface showed unique characteristics. The total number of external $Ca^{++}-binding$ sites of pig heart mitochondria was 29 nmoles per mg protein and the dissociation constant(Kd) was $34{\mu}M$. The $Ca^{++}-binding$ to the external sites seemed to be competitively inhibited by $Na^+\;and\;K^+$; the inhibition constant(Ki) were 9.7 mM and 7.1 mM respectively. Considering the intracellular ion concentrations and large proportion of $Ca^{++}$ uptake in energized mitochondria, the external $Ca^{++}-binding$ pool of the mitochondria did not seem to play a significant role on the regulation of intracellular free $Ca^{++}$ concentration. From this experiment, it was suggested that a small change of intracellular free $Na^+$ concentration might play a role on regulation of free $Ca^{++}$ concentration in cardiac cell by influencing $Ca^{++}-efflux$ from the internal pool of mitochondria.

  • PDF