• 제목/요약/키워드: $Ca^{++}$ influx

검색결과 327건 처리시간 0.023초

Korean Red Ginseng extract and ginsenoside Rg3 have anti-pruritic effects on chloroquine-induced itch by inhibition of MrgprA3/TRPA1-mediated pathway

  • Lee, Wook-Joo;Kim, Young-Sik;Shim, Won-Sik
    • Journal of Ginseng Research
    • /
    • 제42권4호
    • /
    • pp.470-475
    • /
    • 2018
  • Background: It was previously found that Korean Red Ginseng water extract (KRGE) inhibits the histamine-induced itch signaling pathway in peripheral sensory neurons. Thus, in the present study, we investigated whether KRGE inhibited another distinctive itch pathway induced by chloroquine (CQ); a representative histamine-independent pathway mediated by MrgprA3 and TRPA1. Methods: Intracellular calcium changes were measured by the calcium imaging technique in the HEK293T cells transfected with both MrgprA3 and TRPA1 ("MrgprA3/TRPA1"), and in primary culture of mouse dorsal root ganglia (DRGs). Mouse scratching behavior tests were performed to verify proposed antipruritic effects of KRGE and ginsenoside Rg3. Results: CQ-induced $Ca^{2+}$ influx was strongly inhibited by KRGE ($10{\mu}g/mL$) in MrgprA3/TRPA1, and notably ginsenoside Rg3 dose-dependently suppressed CQ-induced $Ca^{2+}$ influx in MrgprA3/TRPA1. Moreover, both KRGE ($10{\mu}g/mL$) and Rg3 ($100{\mu}M$) suppressed CQ-induced $Ca^{2+}$ influx in primary culture of mouse DRGs, indicating that the inhibitory effect of KRGE was functional in peripheral sensory neurons. In vivo tests revealed that not only KRGE (100 mg) suppressed CQ-induced scratching in mice [bouts of scratching: $274.0{\pm}51.47$ (control) vs. $104.7{\pm}17.39$ (KRGE)], but also Rg3 (1.5 mg) oral administration significantly reduced CQ-induced scratching as well [bouts of scratching: $216.8{\pm}33.73$ (control) vs.$115.7{\pm}20.94$ (Rg3)]. Conclusion: The present study verified that KRGE and Rg3 have a strong antipruritic effect against CQ-induced itch. Thus, KRGE is as a promising antipruritic agent that blocks both histamine-dependent and -independent itch at peripheral sensory neuronal levels.

Neuroprotective mechanism of corydaline in glutamate-induced neurotoxicity in HT22 cells

  • Baskar Selvaraj;Dae Won Kim;Ki-Yeon Yoo;Keunwan Park;Thi Thu Thuy Tran;Jae Wook Lee;Heesu Lee
    • International Journal of Oral Biology
    • /
    • 제49권1호
    • /
    • pp.10-17
    • /
    • 2024
  • Glutamate-mediated oxidative stress causes neuronal cell death by increasing intracellular Ca2+ uptake, reactive oxidative species (ROS) generation, mitogen-activated protein kinase (MAPK) activation, and translocation of apoptosis-inducing factor (AIF) to the nucleus. In the current study, we demonstrated that corydaline exerts potent neuroprotective effects against glutamate-induced neurotoxicity. Treatment with 5 mmol/L glutamate increased cellular Ca2+ influx, ROS generation, MAPK activation, and AIF translocation. In contrast, corydaline treatment decreased cellular Ca2+ influx and ROS generation. Western blot analysis revealed that glutamate-mediated MAPK activation was attenuated by corydaline treatment. We further demonstrated that corydaline treatment inhibited the glutamate-mediated translocation of AIF to the nucleus. We propose that corydaline is a promising lead structure for the development of safe and effective neuroprotectants.

The Inhibitory Effect of Eupatilin on Helicobacter Pylori-Induced Release of Leukotriene $D_4$ in the Human Neutrophils and Gastric Mucosal Cells

  • Lee, Jung-Jin;Han, Bok-Gee;Kim, Mal-Nam;Chung, Myung-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제1권5호
    • /
    • pp.573-580
    • /
    • 1997
  • In this report, the inhibitory action of eupatilin was investgated by using leukotriene $D_4$ in the human neutrophils and Kato III cells (Gastric adenoma cells as a substitute for gastric mucosal cells) stimulated by Helicobacter pylori. Leukotriene $D_4$ ($LTD_4$) was released from both neutrophils and Kato III cells when these cells were incubated with H. pylori. The release of $LTD_4$ increased time-dependently and the maximum release of $LTD_4$ was $2.3{\sim}2.5$ pmol. But in the presence of eupatilin, the release of $LTD_4$ from these cells was inhibited in a dose-dependent manner. In the neutrophils, the release of $LTD_4$ was suppressed to 70% and 50% of the control levels when neutrophils was incubated with 0.01 and 0.1 mM of eupatilin. In the Kato III cells, the release of $LTD_4$ was suppressed to 59% and 27% of the control levels by adding 0.01 and 0.1 mM of eupatilin. We estimated the intracellular $Ca^{2+}$ levels when Kato III cells and neutrophils were stimulated by H. pylori using $^{45}Ca$. But the suppressive effect of eupatilin on $Ca^{2+}$ influx into these cells was not significant. We also obtained the results that H. pylori induced $Ca^{2+}$ influx into these cells by confocal microscopy, however there was no differences in the dose level of eupatilin. These results were confirmed by 1H Nuclear Magnetic Resonance(NMR) spectroscopy. The NMR patterns of eupatilin in the absence of $Ca^{2+}$ was changed compare with when $Ca^{2+}$ was present, but its effect was not strong.

  • PDF

Ginsenoside $Rg_3$의 혈소판 응집 억제 효과 및 그 작용기전에 관한 연구 (Inhibitory Effects of Ginsenoslde $Rg_3$ on Platelet Aggregation and its Mechanism of Action)

  • 이소라;박정일
    • Journal of Ginseng Research
    • /
    • 제21권2호
    • /
    • pp.132-140
    • /
    • 1997
  • The effects of ginsenosides purified from red ginseng on platelet aggregation were investigated. Preincubation of washed platelets from rats with either ginsenoside Rg3, ginsenosides non-polar fraction (G-NPF), ginsenoside Rg1(Rg1) or ginsenosides polar fraction(G-PF) reduced the plytelet aggrelation induced by collagen in a dose-dependent manner, whereas ginsenoside Rg2 failed to inhibit the aggregation. Their IC50 values of Rg3, G-NPF, Rgl, and G-PF were 8.7$\pm$1.0, 150.3$\pm$0.1, 369.9$\pm$ 1.0, 606.211.3 $\mu\textrm{g}$/ml, respectively. Aggrelation induced by thrombin was also inhibited by Rg3 and G-NPF with IC50 being 5.2$\pm$ 1.1 and 66.5$\pm$0.8 $\mu\textrm{g}$/ml, respectively. The alterations of Intracellular Ca2+ concentration in platelets were monitored using fura-2 as a fluorescent Ca2+ indicator. Both Ca2+ release from internal stores and Ca2+ influx into cytosol were suppressed by Rg3. Rg3 also inhibited granular release of ATP and TXA2 formation induced by thrombin in a dose-dependent manner in the washed platelets. Rg3 also inhibited Aggregation and ATP release from human platelets induced by collagen to a similar extent as were observed in rat platelets. In conclusion, Rg3 is a Potent anti-aggregating component in ginsenosides and may exert its anti-aggrega1ing activity by decreasing TXAa formation and granular secretion in platelets, most likely by inhibiting Ca2+ influx and Ca2+ mobilization from intracellular stores. Thus ginseng may contribute to the prevention and treatment of thrombosis.

  • PDF

반하백출천마탕(半夏白朮天麻湯)의 조성에 따른 혈관이완활성과 기전 (Enhanced Vasorelaxation of Banhabackchulchunma-Tang and Involved Mechanism)

  • 이헌재;성유진;김상대;문국진;김종봉;김길훤;신흥묵
    • 동의생리병리학회지
    • /
    • 제19권5호
    • /
    • pp.1311-1316
    • /
    • 2005
  • This study was designed to potentiate the vasodilation effect of Banhabackchulchunma-Tang(BCT) prescription by change of mixture. Six different BCT compositions were made according to mixture of herbs. The vascular relaxation effects of 6 different BCT compositions were examined on phenylephrine(PE)-precontracted rat thoracic aorta. The BCT-1 composition exerted significant relaxation on phenylephrine- or KCI- contracted rat thoracic aorta. Its elaxation was endothelium- independent in both PE- and KCl-induced contraction. Treatment of glibenclamide or tetraethylammonium(TEA) did not affect the relaxation of BCT-1. Vasorelaxation efficacy of BCT-1 was also not influenced by low (25mM) or high (50mM, 80mM) KCl-induced contraction. Furthermore, the contraction by increasing $Ca^{2+}$ concentrations (0.3-10.0mM) to a $Ca^{2+}$-free high K+ (60mM) was significantly reduced by pretreatment with BCT-1 In addition, the relaxant effects were not inhibited by pretreatment of rat aorta with L-NAME, MB, indomethacin and atropine. These results confirm that BCT-1 may exerts its vasodilation effect by endothelium-independent manner. According to the above results, we suggest that the relaxation effect of BCT-1 is endothelium-independent and is related with block of $Ca^{2+}$ influx via $Ca^{2+}$ channel.

[ $Ce^{4+}$ ]-Stimulated Ion Fluxes Are Responsible for Apoptosis and Taxol Biosynthesis in Suspension Cultures of Taxus Cells

  • Li Jing-Chuan;Ge Zhi-Qiang;Yuan Ying-Jin
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제10권2호
    • /
    • pp.109-114
    • /
    • 2005
  • Ion fluxes across the plasma membrane activated by 1 mM $Ce^{4+}$, cell apoptosis and taxol biosynthesis in suspension cultures of Taxus cusp/data were studied. The extracellular pH sharply decreased upon the addition of 1 mM $Ce^{4+}$, then increased gradually and exceeded the initial pH value over a time period of 12 h. The extracellular $Ca^{2+}$ concentration decreased within the first 3 h after the addition of $Ce^{4+}$, then gradually decreased to one third of initial value in control at about 72 h and remained unchanged afterwards. Experiments with an ion channel blocker and a $Ca^{2+}$-channel blocker indicated that the dynamic changes in extracellular pH and the $Ca^{2+}$ concentration resulted from the $Ce^{4+}$-induced activation of W uptake and $Ca^{2+}$ influx across the plasma membrane via ion channels. A pretreatment of the ion channel blocker initiated $Ce^{4+}$-treated cells to undergo necrosis, and the prior addition of the $Ca^{2+}$-channel blocker inhibited $Ce^{4+}$-induced taxol biosynthesis and apoptosis. It is thus inferred that W uptake is necessary for cells to survive a $Ce^{4+}$-caused acidic environment and is one of the mechanisms of $Ce^{4+}$-induced apoptosis. Furthermore, the $Ca^{2+}$ influx across the plasma membrane mediated both the $Ce^{4+}$-induced apoptosis and taxol biosynthesis.

Comparison of Membrane Currents in Xenopus Oocytes in Response to Injection of Calcium Influx Factor (CIF) and Depletion of Intracellular Calcium Stores

  • Kim, Hak-Yong;Hanley, Michael R.
    • BMB Reports
    • /
    • 제33권3호
    • /
    • pp.202-207
    • /
    • 2000
  • The depletion of intracellular calcium stores by thapsigargin treatment evoked extracellular calcium-dependent membrane currents in Xenopus laevis oocytes. These currents have been compared to those evoked by microinjection of a calcium influx factor (CIF) purified from Jurkat T lymphocytes. The membrane currents elicited by thapsigargin treatment (peak current, $163{\pm}60$ nA) or CIF injection (peak current, $897{\pm}188$ nA) were both dependent on calcium entry, based on their eradication by the removal of extracellular calcium. The currents were, in both cases, attributed primarily to well-characterized $Ca^{2+}-dependent$ $Cl^-$ currents, based on their similar reversal potentials (-24 mV vs. -28 mV) and their inhibition by niflumic acid (a $Cl^-$ channel blocker). Currents induced by either thapsigargin treatment or CIF injection exhibited an identical pattern of inhibitory sensitivity to a panel of lanthanides, suggesting that thapsigargin treatment or CIF injection evoked $Cl^-$ currents by stimulating calcium influx through pharmacologically identical calcium channels. These results indicate that CIF acts on the same calcium entry pathway activated by the depletion of calcium stores and most lanthanides are novel pharmacological tools for the study of calcium entry in Xenopus oocytes.

  • PDF

옥수수 중배축으로부터 분리한 원형질체에서 IAA와 Aeatin에 의한 세포질 $Ca^{2+}$ 노도의 변화 (Changes of Cytosolic $Ca^{2+}$ by IAA and Zeatin in Protoplasts Isolated from Maize Mesocotyl)

  • 송재진
    • Journal of Plant Biology
    • /
    • 제34권3호
    • /
    • pp.239-244
    • /
    • 1991
  • Ca2+ is implicated as a second messenger in coupling various stimuli such as hormone, gravity and light. The determine whether or not plant hormones mobilize calcium with different action, we investigated the cytosolic Ca2+ changes by IAA and zeatin in the protoplasts isolated from elongating mesocotyl of maize. IAA increased the influx of Ca2+ due to the calcium channel opening, which was confirmed by using verapamil, calcium channel blocker. On the other hand, zeatin increased the cytosolic Ca2+ by promoting the efflux of Ca2+ derived from cellular organelles. These results suggest that different calcium flux induced by IAA and zeatin plays a role in appropriate response resulting in increase of cell elongation or repression cell elongatoin.

  • PDF

$Ca^{2+}$-induced $Ca^{2+}$ Release from Internal Stores in INS-1 Rat Insulinoma Cells

  • Choi, Kyung-Jin;Cho, Dong-Su;Kim, Ju-Young;Kim, Byung-Joon;Lee, Kyung-Moo;Kim, Shin-Rye;Kim, Dong-Kwan;Kim, Se-Hoon;Park, Hyung-Seo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제15권1호
    • /
    • pp.53-59
    • /
    • 2011
  • The secretion of insulin from pancreatic ${\beta}$-cells is triggered by the influx of $Ca^{2+}$ through voltage-dependent $Ca^{2+}$ channels. The resulting elevation of intracellular calcium ($[Ca^{2+}]_i$) triggers additional $Ca^{2+}$ release from internal stores. Less well understood are the mechanisms involved in $Ca^{2+}$ mobilization from internal stores after activation of $Ca^{2+}$ influx. The mobilization process is known as calcium-induced calcium release (CICR). In this study, our goal was to investigate the existence of and the role of caffeine-sensitive ryanodine receptors (RyRs) in a rat pancreatic ${\beta}$-cell line, INS-1 cells. To measure cytosolic and stored $Ca^{2+}$, respectively, cultured INS-1 cells were loaded with fura-2/AM or furaptra/AM. $[Ca^{2+}]_i$ was repetitively increased by caffeine stimulation in normal $Ca^{2+}$ buffer. However, peak $[Ca^{2+}]_i$ was only observed after the first caffeine stimulation in $Ca^{2+}$ free buffer and this increase was markedly blocked by ruthenium red, a RyR blocker. KCl-induced elevations in $[Ca^{2+}]_i$ were reduced by pretreatment with ruthenium red, as well as by depletion of internal $Ca^{2+}$ stores using cyclopiazonic acid (CPA) or caffeine. Caffeine-induced $Ca^{2+}$ mobilization ceased after the internal stores were depleted by carbamylcholine (CCh) or CPA. In permeabilized INS-1 cells,$Ca^{2+}$ release from internal stores was activated by caffeine, $Ca^{2+}$, or ryanodine. Furthermore, ruthenium red completely blocked the CICR response in perrneabilized cells. RyRs were widely distributed throughout the intracellular compartment of INS-1 cells. These results suggest that caffeine-sensitive RyRs exist and modulate the CICR response from internal stores in INS-1 pancreatic ${\beta}$-cells.

CALCIUM EFFECTS OF VISUAL ADAPTATION IN A VERTEBRATE RETINA (I)

  • ung, Hyuk J
    • Journal of Photoscience
    • /
    • 제3권3호
    • /
    • pp.127-132
    • /
    • 1996
  • Calcium has a variety of functions in neuron and muscle cells and blood clotting, especially in the visual system where dark adapted rods cotransport with Na$^+$ into the cell. An influx of Ca$^{2+}$ flows out of the cell through the Na$^+$ - Ca$^{2+}$ exchanger. By using a modified Ussing chamber in order to bring in vivo environment close, we have concluded that Ca$^{2+}$ blocks the activity of guanylate cyclase; in consequence, having an effect on the amplitude of electroretinogram (ERG). We suggest that Ca$^{2+}$ moves between the photoreceptor and the vitreous humor by way of certain Ca$^{2+}$ transport mechanisms. Also, the effect of Zn$^{2+}$ in Ca$^{2+}$ - free ringer solution caused an elevation of amplitude in ERG and a reduction of threshold.

  • PDF