• Title/Summary/Keyword: $C_3A$ content

Search Result 6,840, Processing Time 0.045 seconds

Role of the Strain Energy in Diffuse Phase Transition of (Pb, Ba)(Zr, Ti)O3 ((Pb, Ba) (Zr, Ti)O3계의 확산된 상전이에 있어서 Strain Energy의 역할)

  • 이재찬;주웅길
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.6
    • /
    • pp.586-592
    • /
    • 1987
  • The role of the strain energy and phase stability in the diffuse phase transition have been investigated in the highly disordered solid solution, (Pb1-xBax)(Zr0.4Ti0.6)O3 (0.2 x 0.4). X-ray diffraction analysis indicates that tetragonality (c/a) decreases with the increasing Ba content. Also as the Ba content increases, phase transition becomes more diffuse and at the same time dielectric relaxation as a function of measured frequencies in the 1KHz-10MHz range occurs very pronouncedly. In the Ba content range, 0.2 x 0.35, hysteresis loops are routinely observed and the loop is observed to narrow shape as the Ba content increases but becomes very slim at 40mol% Ba content. Moreover thermal analysis shows that there is no abrupt change in the thermal expansion coefficient below the apparent transition temperature at which dielectric constant becomes maximum. From the above results, it has been concluded that creation of the strain energy due to the distorthion that occurred during the phase transition suppresses diffuse phase transition.

  • PDF

Growth Response and Nutrient Content of Cowpea Sprouts Based on Growth Temperature and Genetic Resources (재배온도 및 유전자원에 따른 동부나물 생장반응 및 영양성분 변화)

  • Kim, Dong-Kwan;Kim, Young-Min;Chon, Sang-Uk;Rim, Yo-Sup;Choi, Jin-Gyung;Kwon, Oh-Do;Park, Heung-Gyu;Shin, Hae-Ryong;Choi, Kyeong-Ju
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.3
    • /
    • pp.332-340
    • /
    • 2014
  • The purpose of this study was to establish the optimal growth temperature and to select genetic resources for production of cowpea sprouts. Seowon was treated between $15^{\circ}C$ and $30^{\circ}C$ at intervals of $3^{\circ}C$ to investigate growth temperature. Twelve resources, including Seowon, IT154149, IT154153, Tvu7426, and Tvu7778, were used for cultivating sprouts at a temperature of $27^{\circ}C$. The yield ratio of cowpea sprouts was highest at $27^{\circ}C$ (657%), and was reduced when growth temperature was decreased. The hard seed rate was lower when the growth temperature was increased. Vitamin C content was highest at $24^{\circ}C$ (2.85 mg/g), ranged between 2.15 and 2.29 mg/g at other growth temperatures, and increased with the length of the growth period. The inorganic component content of cowpea sprouts did not vary based on growth temperature, while the amino acid content increased with increasing growth temperature between $15^{\circ}C$ and $24^{\circ}C$, and then subsequently decreased as growth temperature rose from $24^{\circ}C$ to $30^{\circ}C$. IT154153 had the highest yield ratio of cowpea sprouts per genetic resource (647%), followed by Seowon (615%), and Tvu7426 (608%). Genetic resources with a higher yield ratio had smaller seeds, a thinner seed coat, and superior germinability. The inorganic components found at highest concentrations in the cowpea sprouts were potassium, magnesium, calcium, sodium, iron, molybdenum, and zinc (in that order). In comparison to raw seeds, the protein, calcium, zinc, molybdenum, and iron content in the cowpea sprouts was higher, while the content of aluminum and boron was lower.

Analysis of Pectolinarin Content and Antioxidant activity in Cirsium setidens Nakai by Cultivars (산지별 고려엉겅퀴의 Pectolinarin 함량 및 항산화 활성)

  • Cho, Bong-Yeon;Lee, Jin-Ha;Ra, Moon-Jin;Kim, Sun-Young;Kang, Il-Jun;Han, Kyoung-Chan;Lee, Ok-Hwan
    • Journal of Food Hygiene and Safety
    • /
    • v.31 no.3
    • /
    • pp.210-215
    • /
    • 2016
  • This study was performed to provide basic data of Cirsium setidens Nakai by cultivars that will be applied for development of functional foods and ingredients. We assessed pectiolinarin content, total flavonoids content and antioxidant effects (DPPH radical scavenging activity and ORAC assay) of C. setidens Nakai. Our results showed that the pectolinarin and total flavonoids contents of C. setidens Nakai by cultivars ranged from $3.95{\pm}0.05$ to $7.29{\pm}0.07mg/g$ and from $40.42{\pm}0.91$ to $76.70{\pm}2.24mg$ pectolinarin equivalent (PNE)/g, respectively. Among C. setidens Nakai by cultivars, the pectolinarin content was highest in GW-D extract. Futhermore, the DPPH radical scavenging activity of C. setidens Nakai ranged from 31.25 to 81.93%, respectively. The oxygen radical absorbance capacity (ORAC) value was highest in GW-D and GW-E extracts (514.49 and $501.73{\mu}M\;TE/g$, respectively). These results suggest that C. setidens Nakai extract could be considered as a good sources of natural antioxidants and functional food ingredients.

Changes in Nitrogen Mineralization as Affected by Soil Temperature and Moisture

  • Wang, Xin-Lei;Park, Sang-Hyun;Lee, Bok-Rye;Jeong, Kwang-Hwa;Kim, Tae-Hwan
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.38 no.3
    • /
    • pp.196-201
    • /
    • 2018
  • Soil is the main nitrogen (N) provider for plants but N in soil is not all available to advanced plants. Mineralization is a critical biological process for transferring organic N to inorganic N that can be used by plants directly. To investigate the effect of different levels of soil temperature and water content to soil mineralization, a field experiment was established on three different sites (A, B and C). We measured soil temperature, moisture and electrical conductivity once daily after swine slurry application. Average soil moisture and temperature in site A is the highest among three sites (40.9% and $9.7^{\circ}C$, respectively). Following is in site C (37.3% and $9.6^{\circ}C$) and the lowest is in site B (28.0% and $9.0^{\circ}C$). Ammonium N (NH4+-N) and nitrate N (NO3--N) were determined on the first and fifth day after treatment. Compared with site B and C, site A always had the highest soil total N content (1.54 g N kg-1 on day one; 1.22 g N kg-1 on day five) and highest NO3-- N content (93.18 mg N kg-1 on day one; 16.22 mg N kg-1 on day five) and a significant decrease on day five. Content of NH4+-N in site B and C reduced while in site A, it increased by 6.7%. Results revealed that net N mineralization positively correlated with soil temperature (P<0.5, $r=0.675^*$) and moisture (P<0.01, $r=0.770^{**}$), suggesting that to some extent, higher soil moisture and temperature contribute more to inorganic N that can be used by plants.

Saponin Content and Quality for the Promotion of White Ginseng Water Extraction Conditions (사포닌 함량 및 품질의 증진을 위한 백삼 물추출액 추출 조건)

  • Han, Jin-Soo;Li, Xiangguo;Park, Yong-Jun;Kang, Sun-Joo;Kim, Jung-Sun;Nam, Ki-Yeul;Lee, Ki-Teak;Choi, Jae-Eul
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.54 no.4
    • /
    • pp.458-463
    • /
    • 2009
  • In this study, white ginseng water extract (WGWE) solutions were analyzed to set up the functional saponin content and quality optimization condition. The highest saponin content among the total white ginseng extracts was 8.32 mg/10 ml which was extracted at $75^{\circ}C$ for 18 hours. In addition, the saponin content decreased according to the increased extraction temperature and time. The highest content of $Rb_2$ and Re was 0.89 mg/10 ml, 0.82 mg/10 ml at $75^{\circ}C$ for 18 hours which decreased according to the increased extracted temperature and time. The highest content of $Rg_3$ was 1.67 mg/10 ml at $95^{\circ}C$ for 24 hours which decreased according to the increased time. The turbidity, sweetness and reducing sugar content were increased according to the increased extracted time at $75^{\circ}C$, $85^{\circ}C$, $95^{\circ}C$, but pH were decreased according to the increased extracted time. Therefore, the most appropriate white ginseng extracting method have to extracted the proper temperature for saponin content at first time in combination with raise the temperature for taste at second time.

Effects of Additive Composition and Content on Sintered Density and Compressive Strength of Cordierite Ceramics (첨가제의 조성과 함량이 코디어라이트 세라믹스의 소결밀도와 압축강도에 미치는 영향)

  • Jang, Doo-Hee;Lim, Kwang-Young;Kim, Young-Wook
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.4 s.299
    • /
    • pp.230-234
    • /
    • 2007
  • Cordierite ceramics were fabricated via a reaction sintering process using ceramics-filled polysiloxane as a precursor for cordierite ceramics. In this study, the effects of the additive composition, additive content, and sintering temperature on the sintered density and compressive strength of cordierite ceramics have been investigated The sintered densities of reaction-sintered cordierite ceramics containing $TiO_2$ as an additive were insensitive to the additive composition, additive content, and sintering temperature and ranged from $1.92g/cm^3\;to\;2.06g/cm^3$. In contrast, the cordierite ceramics containing $Y_2O_3$ showed a maximal density of $2.21g/cm^3$ at 5 wt% addition and at a sintering temperature of $1400^{\circ}C$. The compressive strength of cordierite ceramics showed the same tendency with the density. Typical compressive strength of cordierite ceramics containing 5 wt% $Y_2O_3$ as a sintering additive and sintered at $1400^{\circ}C\;was\;{\sim}480MPa$.

Syntheses of SiC and $SiC-Si_3N_4$ Powder from Jecheon Quartz (제천규석으로부터 SiC 및 $SiC-Si_3N_4$계 분말 합성)

  • 이홍림;배철훈;문준화
    • Journal of the Korean Ceramic Society
    • /
    • v.23 no.1
    • /
    • pp.67-73
    • /
    • 1986
  • SiC and $SiC-Si_3N_4$ powder were synthesized via the carbiding and carbiding-nitriding reaction of Jecheon quartz respectively using graphite as a reducing agent. $\beta$-SiC+($\alpha$+$\beta$)-$Si_3N_4$ composite was obtained by the carbiding-nitriding reaction of Jecheon quartz-graphite mixture at 1, 35$0^{\circ}C$ in $H_2$ atmosphere. $\beta$-SiC+($\alpha$+$\beta$)-$Si_3N_4$ composite was obtained by the carbidint-nitriding reaction of Jecheon quartz-graphite mixture at 1, 35$0^{\circ}C$ in $N_2-H_2$ atmosphere. The ratio of $\beta$-SiC+($\alpha$+$\beta$)-$Si_3N_4$ content in a produced composite could be controlled by adjusting the reaction time and gaseous mixture.

  • PDF

In-Situ Synthesis of PS/(-)Silica Composite Particles in Dispersion Polymerization Using An ($\pm$) Amphoteric Initiator

  • Hwang, Deok-Ryul;Hong, Jin-Ho;Lee, Jeong-Woo;Shim, Sang-Eun
    • Macromolecular Research
    • /
    • v.16 no.4
    • /
    • pp.329-336
    • /
    • 2008
  • Core/shell ($\pm$)PS/(-)silica nanocomposite particles were synthesized by dispersion polymerization using an amphoteric initiator, 2,2'-azobis [N-(2-carboxyethyl)-2,2-methylpropionamidine] ($HOOC(CH_2)_2HN$(HN=) $C(CH_3)_2CN$=NC $(CH_3)_2C$(=NH)NH $(CH_2)_2COOH$), VA-057. Negatively charged (-6.9 mV) silica was used as the stabilizer. The effects of silica addition time and silica and initiator concentrations were investigated in terms of polymerization kinetics, ultimate particle morphology, and size/size distribution. Uniform hybrid microspheres with a well-defined, core-shell structure were obtained at the following conditions: silica content = 10-15 wt% to styrene, VA-057 content=above 2 wt% to styrene and silica addition time=0 min after initiation. The delay in silica addition time retarded the polymerization kinetics and broadened the particle size distribution. The rate of polymerization was strongly affected by the silica content: it increased up to 15 wt% silica but then decreased with further increase in silica content. However, the particle size was only marginally influenced by the silica content. The zeta potential of the composite particles slightly decreased with increasing silica content. With increasing VA-057 concentration, the PS microspheres were entirely coated with silica sol above 1.0 wt% initiator.

Bioavailability of Aspartic Acid Chelated Calcium in Calcium Deficient Rats (아스파르트산 킬레이트 칼슘의 칼슘 결핍쥐에서의 생물학적 유용성)

  • Park, Myoung-Gyu;Ha, Tae-Yul;Shin, Kwang-Soon
    • Journal of Nutrition and Health
    • /
    • v.44 no.6
    • /
    • pp.474-480
    • /
    • 2011
  • Calcium (Ca) is an essential element to maintain body homeostasis. However, many factors disturb calcium absorption. Aspartic acid chelated calcium (AAC) was synthesized by new methods using calcium carbonate and aspartic acid. This study was carried out to investigate the bioavailability of AAC in Ca-deficient rats. The experimental groups were as follows: NC; normal diet control group, CD-C; untreated control group of Ca-deficient (CD) rats, CD-$CaCO_3$; $CaCO_3$ treated group of CD rats, CD-AAC; AAC treated group of CD rats, and CD-SWC; and seaweed-derived Ca treated group of CD rats. The Ca content of various types of Ca was held constant at 32 mg/day, and the four CD groups were fed for 7 days after randomized grouping. Ca content in serum, urine, and feces within feeding periods were analyzed to confirm Ca absorption. Serum Ca content was significantly higher in the CD-AAC (11.24 mg/dL) and CD-SWC (10.12 mg/dL) groups than that in the CD-C (8.6 mg/dL) group 2 hours following the first administration. The Ca content in feces was significantly lower in the CD-AAC (35.4 mg/3 days) and CD-SWC (71.1 mg/3 day) groups than that in the CD-$CaCO_3$ (98.7 mg/3 days) group (p > 0.05). AAC had a 2.3-fold higher absorption rate of Ca than that of SWC. No differences in fibula length were observed in the NC and CD groups. The fibula weights of the CD-AAC (0.33 g) and CD-SWC (0.33 g) groups increased compared to those in the CD-C (0.27 g) group; however, no significant difference was observed between the CD groups. We conclude that bioavailability of AAC is higher than that of seaweed-derived Ca or inorganic Ca. Thus, these findings suggest the AAC has potential as a functional food material related to Ca metabolism.

Development of Oriented Strand Board from Acacia Wood (Acacia mangium Willd): Effect of Pretreatment of Strand and Adhesive Content on the Physical and Mechanical Properties of OSB

  • Febrianto, Fauzi;Royama, Lincah Ida;Hidayat, Wahyu;Bakar, Edi S.;Kwon, Jin-Heon;Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.2
    • /
    • pp.121-127
    • /
    • 2009
  • Acacia wood (Acacia mangium Willd.) is the most popular fast growing tree species planted in timber estate in Indonesia and is considered to be very valuable raw materials for structural composite products. The objective of the research was to evaluate the properties of OSB prepared from A. Mangium wood with or without immersing the strands to hot water at $80^{\circ}C$ for 2 hours. MDI adhesive was used in 3 levels i.e., 3%, 5%, and 7%. The moisture content of strand was 7%. The results indicated that immersing strands in hot water for 2 hours at $80^{\circ}C$ prior to manufacture OSB improved significantly the mechanical peoperties (i.e., MOR and MOE) of OSB. The higher the adhesive content resulted in the better the dimensional stabilisation (i.e., water absorption and thickness swelling) and the mechanical properties (i.e., MOR, MOE and IB) of OSB. OSB prepared from hot-water immersed strands with 5% adhesive content has met all parameters requirement on the JIS A 5908 (2003) standard.