• Title/Summary/Keyword: $C_3$turfgrasses

Search Result 16, Processing Time 0.019 seconds

Germination Percentage and Speed under International Seed Testing Association Conditions of Main Herbaceous Plants Used on the Slope (국제종자검정협회(ISTA) 변온조건에서 비탈면 복원용 주요 초화류의 발아율 및 발아속도)

  • Park, Jin-A;Shim, Sang-Ryul
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.21 no.3
    • /
    • pp.47-56
    • /
    • 2018
  • Research was initiated to investigate germination characteristics and germination pattern of 14 herbaceous plant entries used on the road slope during 30 days. An alternative germination condition for 14 herbaceous plant entries required by International Seed Testing Association(ISTA) was applied in the experiment, consisting of 8-hr light at $25^{\circ}C$ and 16-hr dark at $15^{\circ}C$. Significant differences were observed in the first germination rate(0.3%~40.7%)and in the final germination rate(7.7%~93.3%). Days to the first germination(2~8days), days to the 30% germination(2~6days) and days to the peak germination(6~18days) were different among 14 herbaceous plant entries in the study. From this result, we could find out higher final germination rate of 14 herbaceous plant entries in the following order; First, forage crops and cool-season turfgrasses; Second, herbeceous flowers; Third, wild plants. We could also divide germination rate among 14 herbaceous plant entries as 6 groups(I;very high, II;high, III;medium high, IV;medium low, V;low, VI;very low) based on the final germination rate and divide germination speed as 5 groups(A;very fast, B;fast, C;normal, D;slow, E;very slow)based on days to the peak germination. Considering germination characteristics and pattern of 14 herbaceous plant entries Medicago sativa, Lolium perenne, Festuca arundinacea and Cosmos sulphureus were regard as dominating species while Lespedeza cuneata, Silene armeria, Lotus corniculatus var.japonicus, Coreopsis tinctoria and Centaurea cyanus as competitive species following dominating species. However, Chrysanthemum burbankii, Pennisetum alopecuroides, Chrysanthemum boreale., Artemisia princeps var. orientalis and Arundinella hirta were not almost expected to emerge.

Comparison of Early Germinating Vigor, Germination Speed and Germination Rate of Varieties in Poa pratensis L., Lolium perenne L. and Festuca arundinacea Schreb. Grown Under Different Growing Conditions (생육환경에 따른 Poa pratensis L., Lolium perenne L. 및 Festuca arundinacea Schreb.의 초종 및 품종별 발아세, 발아속도 및 발아율 비교)

  • 김경남;남상용
    • Asian Journal of Turfgrass Science
    • /
    • v.17 no.1
    • /
    • pp.1-12
    • /
    • 2003
  • Research was Initiated to investigate germination characteristics of cool-season grasses (CSG). Several turfgrasses were tested in different experiments. Experiments I and III were conducted under a room temperature condition of 16$^{\circ}C$ to 23 $^{\circ}C$ and under a constant light condition at 25 $^{\circ}C$, respectively. An alternative environment condition that is a requirement for a CSG germination test by International Seed Testing Association (ISTA) was applied in the Experiment II, consisting of 8-hr light at 25 $^{\circ}C$ and 16-hr dark at 15 $^{\circ}C$. In each experiment, data such as early germinating vigor, germination speed and germination rate were evaluated. Six turfgrass entries were comprised of two varieties each from Kentucky bluegrass (KB, Poa pratensis L.), perennial ryegrass (PR, Lolium perenne L.), and tall fescue (TF, Festuca arundinacea Schreb.), respectively. Significant differences were observed in early germinating vigor, germination speed and germination rate. Early germinating vigor as measured by days to 70% seed germination was variable according to environment conditions, turfgrasses and varieties. It was less than 6 days in PR and 6 to 9 days in TF. However, KB resulted in 11 to 13 days under an alternative condition and 11 to 28 days under a room temperature condition. The germination speed was fastest in PR of 7 to 10 days and slowest in KB of 14 to 21 days. However, intermediate speed of 10 to 14 days was associated with TF. There were considerable variations in germination rate among turfgrasses according to different conditions. Generally, PR and TF germinated well, regardless of environment conditions. However, a great difference was observed among KB varieties, when compared with others. Under a room temperature condition, total germination rate was 71.0% in Midnight and 77.7% in Award. And it increased under an alternative condition, which was 81.7% and 91.7% in Award and Midnight, respectively. However, the poorest rate was found under a constant temperature condition, resulting in 18.0% in Award and 15.3% in Midnight. These results suggest that an intensive germination test required by ISTA be needed prior to the decision of seeding rate, including early germinating vigor and germination speed as well as total germination rate. KB is very sensitive to environment conditions and thus its variety selection should be based on a careful expertise.

Studies on Photosynthetic and Respiratory Characteristics in Warm Season and Cool Season Turfgrasses (한지형(寒地型) 잔디와 난지형(暖地型) 잔디의 광합성(光合成) 및 호흡특성(呼吸特性))

  • Nan, Xuan Song;Kaneko, Seiji;Ishii, Ryuichi
    • Korean Journal of Weed Science
    • /
    • v.15 no.2
    • /
    • pp.166-174
    • /
    • 1995
  • This experiment was conducted to investigate a cause of summer depression of cool season turfgrass, using nine cultivars in warm season and twenty-eight cool season turfgrasses. Even though an average of apparent photosynthesis(APS) per fresh weight was 13.09 mg $CO_2$/g/h in warm season turfgrass and 7.75 mg $CO_2$/g/h in cool season turfgrass, the Creeping bentgrass in cool season type was higher than Kikuyugrass and Bahiagrass in warm season type. The optimum temperature for the heighest APS was $30^{\circ}C$ in warm season type and $25^{\circ}C$ in cool season type. In $CO_2$ compensation point(CCP) as an index of dark respiration, it was higher in cool season turfgrass(75.6ppm) than warm season turfgrass(29.5ppm). In warm season type, even though the temperature increased from $25^{\circ}C$ to $40^{\circ}C$ the CCP was not increased. But the higher temperature rises the more increased CCP in cool season type. Dark respiration(DR) was higher in cool season type than warm season type under various temperature conditions, but the increasing ratio of DR with the temperature increment was not so much differed between two types.

  • PDF

Effects of Sodding and Seeding Time and Rate of Seed Mixture on the Establishment of Cool-Season Turfgrasses (한지형 잔디의 조성시기, 초종 혼합 비율이 잔디 피복에 미치는 영향)

  • Shim Gyu Yul;Kim Chang Soo;Lee Seong Ho;Joo Young Kyoo
    • Asian Journal of Turfgrass Science
    • /
    • v.18 no.4
    • /
    • pp.179-191
    • /
    • 2004
  • This study was conducted to find out the effect of sodding and seeding time and rate of seed mixtures on the establishment of cool-season turfgrasses by evaluating the turf coverage rates for two years. In fall planting, the required establishment period of full coverage($100\%$) was 1.5 months with a rolled turf sodding(Kentucky bluegrass $100\%$, Kentucky bluegrass $80\%$+perennial ryegrass $20\%$). The $100\%$ turf establishment was achieved in 7 months with Perennial ryegrass $100\%$, and 7.5 months by seeding with Kentucky bluegrass $100\%$(KB 100), Kentucky bluegrass $80\%$+perennial ryegrass $20\%$(KB80+PR20), Kentucky bluegrass $70\%$+perennial ryegrass $30\%$(KB70+PR30). In spring planting, the establishment periods far sod with KB 100 or KB80+PR20 were taken one month. However, in the case of seeding, the establishment periods were 3 months, 3.5 months, 3.5 months and 4 months with PR100, KB80+PR20, KB70+PR30, and KB 100, respectively Comparing the turf establishment vigor between fall and spring planting, the vigor was higher In spring planting than in fall planting in both sodding and . seeding. In the case of spring planting, the most proper time for turf establishment was tested on April, May, and June trials. The effect was significant in establishment vigor. The result showed highest on April planting. On May and June trials, establishment vigors were decreased gradually As the mixture rate of PR increased, ryegrass, establishment vigor was decreased with the rates. These results indicated that perennial ryegrass has relatively less tolerant to summer heat than Kentucky bluegrass. Number of shoots in 95 days after seeding was higher in KB100 by 16,600 per $m^2$ than in PR100 by 12,400 per $m^2$, while the lowest number showed in KB50+PR50 by 3,300 per $m^2$. Those in KB80:PR20, KB70:PR30 were 6,700 and 4,900 per $m^2$, respectively. The ratios of tillers according to mixture rates between Kentucky bluegrass and perennial ryegrass were KB80:PR20=87:13, KB70:PR30=78:22, and KB50:PR50=48:52. According to results in this study, Ideal seeding time might be spring (April) than in fall (September), and proper mixture rate was $80\%$ of Kentucky bluegrass with $20\%$ of perennial ryegrass.

Increase of Growth on Cool Season Turfgrass by Foliar Application of Preparations of Turfgrass Fertilizer during Fall Season (잔디 비료 제형의 엽면 살포가 가을철 한지형 잔디의 생장 증대)

  • Koo, Jun Hwak;Heo, Hyug Jae;Kim, Yang Sun;Yun, Jeong Ho;Chang, Seog Won;Lee, Seong Jun;Chang, Taehyun
    • Weed & Turfgrass Science
    • /
    • v.3 no.1
    • /
    • pp.41-49
    • /
    • 2014
  • Four preparations of liquid turfgrass fertilizers were tested cool season turfgrasses during fall season. The preparations of PS-A, PS-B, PH-C and PH-D for commercial products were contained with essential nutrient elements, seaweed extract, amino acids, and humus substance. Growth and quality of creeping bentgrass (Agrostis palustris Huds cv. Penn-A1) and Kentucky bluegrass (Poa pratensis L.) mixture (Midnight 33%, Moonlight 33%, Prosperity 33%) were evaluated by normalized difference vegetation index (NDVI), root length and fresh weight, shoot density, turf color, and chlorophyll content. Three foliar sprays of 4 preparations with an interval of 7 days were made in the fall of 2013 in the sod production field at Hapchun, Korea. No significant difference among 3 preparations was found in NDVI of creeping bentgrass. However, PS-A was significantly increased NDVI of Kentucky bluegrass. Two to three applications of PS-A significantly increased chlorophyll content and turf color. Three foliar sprays of PS-A and PS-B were significantly increased the shoot density of Kentucky bluegrass on 20 days after final application. These results may indicate that the use of some preparation is beneficial in producing higher quality turfgrass sod with better color and chlorophyll content during fall season.

Physiological and Ecological Studies on Prolongation of the Green Perido in Korean Lawn (잔디의 녹색기간연장에 관한 생리 생태학적 연구)

  • 장남기;김형기
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.6 no.3
    • /
    • pp.131-137
    • /
    • 1986
  • Korean lawn, Zoysia japonica STEUD, is the type of a perennial warm-season lawn grass that has a naturally green period during 5 months from May to September. This study was carried out to detect the effects of N-P-K fertilization, regrowth capacity after mowing and chlorophyll contents on prolongation of the green period in Zoysia japonica grasslands. The results obtained are summarized as follows: 1. The effects of nitrogen fertilizer application on Zoysia japonica grasslands were affected on regrowth capacity after mowing, green color of leaf canopies and chlorophyll contents, respectively. 2. A the experimental plots which applied 45g/$m^2$/10 weeks of $N_3$ fertilizer, there were high significant effects on prolongation of the green period and the plots of phosphorus and potassium had additive effects. 3. Prolongation of the green period to the last ten days of October was obviously possible by slow degrees in proportion to increment of N-P-K fertilization. 4. However, it is interpreted that more prolongation of the green period is impossible with N-P-K fertilization and irrigation treatments, unless the intermediate turfgrasses between $C_3$ and $C_4$ plants must be found and bred.

  • PDF