• Title/Summary/Keyword: $C_2H_2$ sensor

Search Result 418, Processing Time 0.033 seconds

Effect of Ni Interlayer on the Methanol Gas Sensitivity of ITO Thin Films

  • Lee, Y.J.;Huh, S.B.;Lee, H.M.;Shin, C.H.;Jeong, C.W.;Chae, J.H.;Kim, Y.S.;Kim, Daeil
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.5
    • /
    • pp.245-248
    • /
    • 2010
  • Sn doped $In_2O_3$ (ITO) and ITO/Ni/ITO (INI) multilayer films were deposited on the glass substrates with a reactive magnetron sputtering system without intentional substrate heating and then the influence of the Ni interlayer on the methanol gas sensitivity of ITO and INI film sensors were investigated. Although both ITO and INI film sensors have the same thickness of 100 nm, INI sensors have a sandwich structure of ITO 50 nm/Ni 5 nm/ITO 45 nm. The changes in the gas sensitivity of the film sensors caused by methanol gas ranging from 100 to 1000 ppm were measured. It is observed that the INI film sensors show the higher sensitivity than that of the ITO single layer sensors. Finally, it can be concluded that the INI film sensor have the potential to be used as improved methanol gas sensors.

Utilization of Laser Range Measurements for Guiding Unmanned Agricultural Machinery

  • Jung, I. G.;Park, W. P.;Kim, S. C.;Sung, J. H.;Chung, S. O.
    • Agricultural and Biosystems Engineering
    • /
    • v.2 no.2
    • /
    • pp.69-74
    • /
    • 2001
  • Detection of operation lines in farm works, object recognition and obstacle avoidance are essential pre-requisite technologies for unmanned agricultural machinery. A CCD camera, which has been largely used for these functions, is expensive and has difficulty in real-time signal processing. In this study, a laser range sensor was selected as the guiding vision for unmanned agricultural machinery such as a tractor. To achieve this capability, algorithms for distance measurement, signal filtering, object recognition, and obstacle avoidance were developed. Computer simulations were carried out to evaluate performance of the algorithms. Experiments were also conducted with various materials and shapes, Laser beam lost its intensity for poor reflective materials, resulting in less range value than actual, so a compensation technique was considered to be necessary. Object detection system was fabricated on an agricultural tractor and the performance was evaluated. As test result for obstacle detection and avoidance in field, to detect and avoid obstacle for path finding with guiding system for unmanned agricultural machinery was enable.

  • PDF

Development of Optical Fiber Glucose and Lactate Biosensors for Bioprocess Monitoring (생물공정 모니터링을 위한 광섬유 포도당 및 젖산 센서의 개발)

  • Jung, Chang Hwan;Sohn, Ok-Jae;Rhee, Jong Il
    • KSBB Journal
    • /
    • v.32 no.1
    • /
    • pp.35-45
    • /
    • 2017
  • In this work the optical fiber glucose and lactate biosensors were developed by using fluorescent dye and enzyme immobilized on the end tip of an optical fiber. 3-Glycidyloxypropyl)methyldiethoxysilane (GPTMS), (3-Aminopropyl) trimethoxysilane (APTMS) and Methyltrimethoxysilane (MTMS) were used to immobilize glucose oxidase (GOD), lactate oxidase (LOD) and ruthenium(II) complex (tris(4,7-diphenyl-1,10-phenanthroline) ruthenium(II), $Ru(dpp)_3^{2+}$) as oxygen sensitive fluorescent dye. MTMS sol-gel was an excellent supporting material for the immobilization of $Ru(dpp)_3^{2+}$, GOD, and LOD on the optical fiber. Storage stability of the optical fiber glucose sensor was kept constant over 20 days, while the optical fiber lactate sensor had constant storage stability over 17 days. The optical fiber glucose and lactate biosensors also maintained good operational stability for 20 hours and 14 hours, respectively. The activities of the immobilized enzymes were most excellent at pH 7 and at $25^{\circ}C$. On-line monitoring of glucose and lactate in a simulated process was performed with the optical fiber glucose and lactate biosensors. On-line monitoring results were agreed with those of off-line data measured with high performance liquid chromatography (HPLC).

Growth of Thin Film using Chemical Bath Deposition Method and Their Photoconductive Characterics ($Cd_{1-x}Zn_{x}S$ 박막의 성장과 광전도 특성)

  • Lee, S.Y.;Hong, K.J.;You, S.H.;Shin, Y.J.;Lee, K.K.;Suh, S.S.;Kim, H.S.;Yun, E.H.;Kim, S.U.;Park, H.S.;Shin, Y.J.;Jeong, T.S.;Shin, H.K.;Kim, T.S.;Moon, J.D.;Lee, C.I.;Jeon, S.L.
    • Journal of Sensor Science and Technology
    • /
    • v.4 no.3
    • /
    • pp.60-70
    • /
    • 1995
  • Polycrystalline $Cd_{1-x}Zn_{x}S$ thin film were grown on slide glass(corning-2948) substrate using a chemical bath deposition (C.B.D) method. They were annealed at various temperature and X -ray diffraction patterns were measured by X-ray diffractometor in order to study $Cd_{1-x}Zn_{x}S$ polycrystal structure using extrapolation method of X-ray diffraction patterns for the CdS, ZnS sample annealed in $N_{2}$ gas at $550^{\circ}C$. It was found hexagonal structure which had the lattice constant $a_{0}\;=\;4.1364{\AA}$, $c_{0}\;=\;6.7129{\AA}$ in CdS and $a_{0}\;=\;3.8062{\AA}$, $c_{0}\;=\;6.2681{\AA}$ in ZnS, respectively. Hall effect on these sample was measured by Van der Pauw method and then studied on carrier density and mobility depending on temperature. We measured also spectral response, sensitivity maximum allowable power dissipation and response time on these sample.

  • PDF

Sensing the Stress: the Role of the Stress-activated p38/Hog1 MAPK Signalling Pathway in Human Pathogenic Fungus Cryptococcus neoformans

  • Bahn, Yong-Sun;Heitman, Joseph
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2007.05a
    • /
    • pp.120-122
    • /
    • 2007
  • All living organisms use numerous signal-transduction pathways to sense and respond to their environments and thereby survive and proliferate in a range of biological niches. Molecular dissection of these signalling networks has increased our understanding of these communication processes and provides a platform for therapeutic intervention when these pathways malfunction in disease states, including infection. Owing to the expanding availability of sequenced genomes, a wealth of genetic and molecular tools and the conservation of signalling networks, members of the fungal kingdom serve as excellent model systems for more complex, multicellular organisms. Here, we employed Cryptococcus neoformans as a model system to understand how fungal-signalling circuits operate at the molecular level to sense and respond to a plethora of environmental stresses, including osmoticshock, UV, high temperature, oxidative stress and toxic drugs/metabolites. The stress-activated p38/Hog1 MAPK pathway is structurally conserved in many organisms as diverse as yeast and mammals, but its regulation is uniquely specialized in a majority of clinical Cryptococcus neoformans serotype A and D strains to control differentiation and virulence factor regulation. C. neoformans Hog1 MAPK is controlled by Pbs2 MAPK kinase (MAPKK). The Pbs2-Hog1 MAPK cascade is controlled by the fungal "two-component" system that is composed of a response regulator, Ssk1, and multiple sensor kinases, including two-component.like (Tco) 1 and Tco2. Tco1 and Tco2 play shared and distinct roles in stress responses and drug sensitivity through the Hog1 MAPK system. Furthermore, each sensor kinase mediates unique cellular functions for virulence and morphological differentiation. We also identified and characterized the Ssk2 MAPKKK upstream of the MAPKK Pbs2 and the MAPK Hog1 in C. neoformans. The SSK2 gene was identified as a potential component responsible for differential Hog1 regulation between the serotype D sibling f1 strains B3501 and B3502 through comparative analysis of their meiotic map with the meiotic segregation of Hog1-dependent sensitivity to the fungicide fludioxonil. Ssk2 is the only polymorphic component in the Hog1 MAPK module, including two coding sequence changes between the SSK2 alleles in B3501 and B3502 strains. To further support this finding, the SSK2 allele exchange completely swapped Hog1-related phenotypes between B3501 and B3502 strains. In the serotype A strain H99, disruption of the SSK2 gene dramatically enhanced capsule biosynthesis and mating efficiency, similar to pbs2 and hog1 mutations. Furthermore, ssk2, pbs2, and hog1 mutants are all hypersensitive to a variety of stresses and completely resistant to fludioxonil. Taken together, these findings indicate that Ssk2 is the critical interface protein connecting the two-component system and the Pbs2-Hog1 pathway in C. neoformans.

  • PDF

Characteristics of the Heteroepitaxial $Si_{1-x}Ge_{x}$ Films Grown by RTCVD Method (RTCVD 법으로 성장한 $Si_{1-x}Ge_{x}$ 에피막의 특성)

  • Chung, W.J.;Kwon, Y.K.;Bae, Y.H.;Kim, K.I.;Kang, B.K.;Sohn, B.K.
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.61-67
    • /
    • 1996
  • The growth and characterization of heteroepitaxial $Si_{1-x}Ge_{x}$ films grown by the RTCVD (Rapid Thermal Chemical Vapor Deposition) method were described. For the growth of $Si_{1-x}Ge_{x}$ heteroepitaxial layers, $SiH_{4}$ / $GeH_{4}$ / $H_{2}$ gas mixtures were used. The growth conditions were varied to investigate their effects on the Si / Ge composition ratios, the interface abruptness and crystalline properties. The experimental data shows that the misfit threading dislocation in $Si_{1-x}Ge_{x}$ / Si heteroepitaxial film of about $400\;{\AA}$ thickness was not observed at the growth temperature of as low as $650^{\circ}C$, and the composition ratios of Si / Ge changed linearly with $SiH_{4}$ / $GeH_{4}$ gas mixing ratios in our experimental ranges. In the in-situ boron doping experiments, the doping abruptness would be controlled within several hundreds ${\AA}$/decade.

  • PDF

Porous silicon-based chemical and biosensors (다공질 실리콘 구조를 이용한 화학 및 바이오 센서)

  • Kim, Yun-Ho;Park, Eun-Jin;Choi, Woo-Seok;Hong, Suk-In;Min, Nam-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2410-2412
    • /
    • 2005
  • In this study, two types of PS substrate were fabricated for sensing of chemical and biological substances. For sensing of the humidity and chemical analyzes such as $CH_3OH$ or $C_2H_5OH$, PS layers are prepared by photoelectrochemical etching of silicon wafer in aqueous hydrofluoric acid solution. To evaluate their sensitivity, we measured the resistance variation of the PS diaphragm. As the amplitude of applied voltage increases from 2 to 6Vpp at constant frequency of 5kHz, the resistance variation for humidity sensor rises from 376.3 to $784.8{\Omega}$/%RH. And the sensitivities for $CH_3OH$ and $C_2H_5OH$ were 0.068 uA/% and 0.212 uA/%, respectively. For biological sensing application, amperometric urea sensors were fabricated based on porous silicon(PS), and planar silicon(PLS) electrode substrates by the electrochemical methods. Pt thin film was sputtered on these substrates which were previously formed by electrochemical anodization. Poly (3-methylthiophene) (P3MT) were used for electron transfer matrix between urease(Urs) and the electrode phase, and Urs also was by electrochemically immobilized. Effective working area of these electrodes was determined for the first time by using $Fe(CN)_6^{3-}/Fe(CN)_6^{4-}$ redox couple in which nearly reversible cyclic voltammograms were obtained. The $i_p$ vs $v^{1/2}$ plots show that effective working electrode area of the PS-based Pt thin film electrode was 1.6 times larger than the PLS-based one and we can readily expect the enlarged surface area of PS electrode would result in increased sensitivity by ca. 1.6 times. Actually, amperometric sensitivity of the Urs/P3MT/Pt/PS electrode was ca 0.91uA/$mM{\cdot}cm^2$, and that of the Urs/P3MT/Pt/PLS electrode was ca. 0.91uA/$mM{\cdot}cm^2$ in a linear range of 1mmol/L to 100mmol/L urea concentrations

  • PDF

Pyroelectric Properties of $Pb(Zn_{1/3}Nb_{2/3})O_3-Pb(Fe_{1/2}Nb_{1/2})O}3$ Ceramics ($Pb(Zn_{1/3}Nb_{2/3})O_3-Pb(Fe_{1/2}Nb_{1/2})O}3$ 계에서의 초전성질에 관한 연구)

  • 김정욱;최성철;이응상
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.6
    • /
    • pp.748-760
    • /
    • 1995
  • Pyroelectric properties, figure of merits, and the other properties of the Pb(Zn1/3Nb2/3)O3-Pb(Fe1/2Nb1/2)O3 system, as expected to have excellent pyroelectric properties in the operating temperature range of pyroelectric type infrared sensor, were investigated. In the Pb(Zn1/3Nb2/3)O3-Pb(Fe1/2Nb1/2)O3 system, suppression of the pyrochlore phase depended on sintering condition, as like sintering temperature, holding time, sintering atmosphere. The specimen, sintered by the same composition atmosphere powder at 105$0^{\circ}C$ for 1.5h, possessed the best physical property. It was found that the piezoelectric parameters were mainly depended on the amount of spontaneous polarization and then the 0.2PZN-0.8PFN showed the best pyro- and piezoelectric properties. In terms of the experimental method, two pyroelectric-testing methods, i.e. static and dynamic methods, had a same tendency. Also the result of pyroelectric testing by the static method indicated that the diffuse phase transitiion resulted in the temperature difference of phase transition between dielectric constant and pyroelectric coefficient.

  • PDF

First-principles Study of MoS2 Nanostructures with Various Adsorbates

  • Cha, Janghwan;Sung, Dongchul;Hong, Suklyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.210.2-210.2
    • /
    • 2014
  • Recently, molybdenum disulfide (MoS2) nanostructures have been investigated for applications of lithium-ion batteries, solar cell, and gas sensors. In this regard, we have studied atomic and electronic properties of MoS2 nanostructures with adsorbed atoms and molecules using density functional theory calculations. Our calculations reveal that the several atoms such as H, C, N, and F are chemically bound to several sites on the two-dimensional (2D) MoS2 surface. On the other hand, various contamination molecules such as CO, CO2, NO, NO2, and NH3 do not bind to the surface. Next, adsorption of various molecules on the one-dimensional (1D) armchair MoS2 nanoribbon is investigated. Contrary to the case of 2D MoS2 monolayer surface, some molecules (CO and NO) are bound well to the edge of the MoS2 nanoribbon. We find that the molecular states due to adsorption are located near the Fermi level, which makes the band gap narrower. Therefore, we suggest that monolayer MoS2 nanoribbons be used as the gas sensors or detectors.

  • PDF

GOES-9 GVAR Imager Processing System Development by KARI

  • Ahn, S.I.;Koo, I.H.;Yang, H.M.;Hyun, D.H.;Park, D.J.;Kang, C.H.;Kim, D.S.;Choi, H.J.;Paik, H.Y.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.31-33
    • /
    • 2003
  • Recently, KARI developed in-house meteorological sensor processing system named MESIS for GOES GVAR 5-CH Imager for better KOMPSAT EOC mission operation. MESIS consists of antenna system, receiver, serial telemetry card, processing and mapping software, and 2 NT PC systems. This paper shows system requirement, system design, characteristic and test results of processing system. System operation concept and sample image are also provided. Implemented system was proven to be fully operational through lots of operations covering from RF signal reception to web publishing.

  • PDF