• Title/Summary/Keyword: $C_2$ Dissociation

Search Result 245, Processing Time 0.02 seconds

Molecular Properties of Excitation-Contraction Coupling Proteins in Infant and Adult Human Heart Tissues

  • Jung, Dai Hyun;Lee, Cheol Joo;Suh, Chang Kook;You, Hye Jin;Kim, Do Han
    • Molecules and Cells
    • /
    • v.20 no.1
    • /
    • pp.51-56
    • /
    • 2005
  • Excitation-contraction coupling (ECC) proteins in the human heart were characterized using human atrial tissues from different age groups. The samples were classified into one infant group (Group A: 0.2-7 years old) and three adult groups (Group B: 21-30; Group C: 41-49; Group D: 60-66). Whole homogenates (WH) of atrial tissues were assayed for ligand binding, $^{45}Ca^{2+}$ uptake and content of ECC proteins by Western blotting. Equilibrium [$^3H$]ryanodine binding to characterize the ryanodine receptor (RyR) of the sarcoplasmic reticulum (SR) showed that the maximal [$^3H$]ryanodine binding ($B_{max}$) to RyR was similar in all the age groups, but the dissociation constant ($k_d$) of ryanodine was higher in the infant group than the adult groups. Oxalate-supported $^{45}Ca^{2+}$ uptake into the SR, a function of the SR SERCA2a activity, was lower in the infant group than in the adult groups. Similarly, [$^3H$]PN200-110 binding, an index of dihydropyridine receptor (DHPR) density, was lower in the infant group. Expression of calsequestrin and triadin assessed by Western blotting was similar in the infant and adult groups, but junctin expression was considerably higher in the adult groups. These differences in key ECC proteins could underlie the different $Ca^{2+}$ handling properties and contractility of infant hearts.

Adsorption Behaviors of Metal Elements onto Illite and Halloysite (일라이트, 할로이사이트에 대한 중금속 원소의 흡착특성)

  • 추창오;김수진;정찬호;김천수
    • Journal of the Mineralogical Society of Korea
    • /
    • v.11 no.1
    • /
    • pp.20-31
    • /
    • 1998
  • Adsorption of metal elements onto illite and halloysite was investigated at $25^{\circ}C$ using pollutant water collected from the gold-bearing metal mine. Incipient solution of pH 3.19 was reacted with clay minerals as a function of time: 10 minute, 30 minute, 1 hour, 12 hour, 24 hour, 1 day, 2 day, 1 week, and 2 week. Twenty-seven cations and six anions from solutions were analyzed by AAs (atomic absorption spectrometer), ICP(induced-coupled plasma), and IC (ion chromatography). Speciation and saturation index of solutions were calculated by WATEQ4F and MINTEQA2 codes, indicating that most of metal ions exist as free ions and that there is little difference in chemical species and relative abundances between initial solution and reacted solutions. The adsorption results showed that the adsorption extent of elements varies depending on mineral types and reaction time. As for illite, adsorption after 1 hour-reaction occurs in the order of As>Pb>Ge>Li>Co, Pb, Cr, Ba>Cs for trace elements and Fe>K>Na>Mn>Al>Ca>Si for major elements, respectively. As for halloysite, adsorption after 1 hour-reaction occurs in the order of Cu>Pb>Li>Ge>Cr>Zn>As>Ba>Ti>Cd>Co for trace elements and Fe>K>Mn>Ca>Al>Na>Si for major elements, respectively. After 2 week-reaction, the adsorption occurs in the order of Cu>As>Zn>Li>Ge>Co>Ti>Ba>Ni>Pb>Cr>Cd>Se for trace elements and Fe>K>Mn>Al, Mg>Ca>Na, Si for major elements, respectively. No significant adsorption as well as selectivity was found for anions. Although halloysite has a 1:1 layer structure, its capacity of adsorption is greater than that of illite with 2:1 structure, probably due to its peculiar mineralogical characteristics. According to FTIR (Fourier transform infrared spectroscopy) results, there was no shift in the OH-stretching bond for illite, but the ν1 bond at 3695 cm-1 for halloysite was found to be stronger. In the viewpoint of adsorption, illite is characterized by an inner-sphere complex, whereas halloysite by an outer-sphere complex, respectively. Initial ion activity and dissociation constant of metal elements are regarded as the main factors that control the adsorption behaviors in a natural system containing multicomponents at the acidic condition.

  • PDF

Electrospray ionization tandem mass fragmentation pattern of camostat and its degradation product, 4-(4-guanidinobenzoyloxy)phenylacetic acid (Camostat 및 분해산물 4-(4-guanidinobenzoyloxy)phenylacetic acid의 전자분무 이온화 텐덤 질량 fragmentation 패턴)

  • Kwon, Soon-Ho;Shin, Hye-Jin;Park, Ji-Myeong;Lee, Kyoung-Ryul;Kim, Young-Jin;Lee, Sang-Hoo
    • Analytical Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.78-84
    • /
    • 2011
  • The fragmentation patterns of a serine protease inhibitor, camostat, and its degradation product, 4-(4-guanidinobenzoyloxy)phenylacetic acid (GBPA), were for the first time investigated by a triple quadrupole tandem mass spectrometry equipped with an electrospray source (ESI-MS/MS) in positive and/or negative ion mode under collision-induced dissociation (CID). The positive CID spectrum of camostat showed distinctly that the single bond (C-O) cleavage between carbonyl group and oxygen atom of the ester bonds of the compound favorably occurred and then the loss of N,N-dimethylcarbamoylmethyl group was more susceptible than that of guanidine moiety. In the positive ion CID spectrum of GBPA, the initial cleavage between the carbonyl group and oxygen atom of 4-guanidinobenzoyloxy group also occurred, yielding the most abundant fragment ion at m/z 145. On the other hand, the negative CID spectrum of GBPA characteristically showed the occurrence of the most abundant peak at m/z 226 resulting from the sequential neutral losses of $CO_2$ and HN=C=NH from the parent ion at m/z 312.

Kinetic Studies on the Oxidation Reaction of Malonic Acid by Ceric Ion (세륨(Ⅳ)에 의한 말론산의 산화반응에 관한 반응속도론적 연구)

  • Kim, Wang Gi
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.10
    • /
    • pp.705-709
    • /
    • 1994
  • The kinetics of the oxidation reaction of malonic acid by ceric ion in 1 M sulfuric acid solution at $20^{\circ}C$ have been investigated by spectrophotometric method. The reaction rate at a large excess of malonic acid was found to be pseudo-first order. The observed pseudo-first order rate constants, $k_{obs}$, are dependent on the concentration of malonic acid, [MA], of which relationship has been found to be $k_{obs}$ = (0.592[MA])/(1+14.5[MA]$^2$). A mechanism for the reaction has been suggested on the basis of the above rate equation. The rate determining step may be the electron transfer reaction between enolate type malonate anion, which is formed by the acid dissociation reaction of malonic acid, and Ce(IV). The rate depression in the range of high concentration of MA has been explained by the formation of 1 : 2 chelate between Ce(IV) and malonate. According to the mechanism, the pH dependence of the rate, which was studied by Sengupta et al., has also been explained.

  • PDF

Study of Improvement Life and Electrochemical Characteristics for Lithium/sulfur Battery using Porous Carbon Sphere (다공성 구형 탄소를 이용한 리튬/유황 전지의 수명개선 및 전기화학특성 연구)

  • Hur, Sung Kyu;Lim, Soo A
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.3
    • /
    • pp.42-51
    • /
    • 2021
  • Dissociation into Lithium-polysulfide electrolyte due to repeated cycles during the Lithium/Sulfur battery reaction is a major problem of reduced battery lifespan. We searched for a porous carbon with a large specific surface area that infiltrated S to prevent liquid Lithium-polysulfide from being dissolved in electrolyte, induce adsorption of Lithium-polysulfide, and further increase conductivity. In order to obtain porous carbon spheres with a large specific surface area, the carbon spheres of 1939 m2/g were raised to 2200 m2/g through additional KOH treatment. In addition, through heat treatment with S, a carbon sulfur compound containing 75 wt% of S was fabricate and material analysis was conducted on the possibility of using the cathode material. The electrochemical characteristics of the Reference (622; sulfur: 60%, conductive material: 20%, binder: 20%) pouch cell and the pouch cell made using 75wt% of carbon sulfur compound were analyzed. 75wt% of carbon sulfur pouch cell showed a 20% increase in lifespan and 10% improvement in C-rate compared to the Reference pouch cell after 50 cycles.

Thermal Product Distribution of Chlorinated Hydrocarbons with Pyrolytic Reaction Conditions (열분해 반응조건에 따른 염화탄화수소 생성물 분포 특성)

  • Kim, Yong-Je;Won, Yang-Soo
    • Clean Technology
    • /
    • v.16 no.3
    • /
    • pp.198-205
    • /
    • 2010
  • Two sets of thermal reaction experiment for chlorinated hydrocarbons were performed using an isothermal tubular-flow reactor in order to investigate thermal decomposition, including product distribution of chlorinated hydrocarbons. The effects of $H_2$ or Ar as the reaction atmosphere on the thermal decomposition and product distribution for dichloromethane($CH_2Cl_2$) was examined. The experimental results showed that higher conversion of $CH_2Cl_2$ was obtained under $H_2$ atmosphere than under Ar atmosphere. This phenomenon indicates that reactive-gas $H_2$ reaction atmosphere was found to accelerate $CH_2Cl_2$ decomposition. The $H_2$ plays a key role in acceleration of $CH_2Cl_2$ decomposition and formation of dechlorinated light hydrocarbons, while reducing PAH and soot formation through hydrodechlorination process. It was also observed that $CH_3Cl,\;CH_4,\;C_2H_6,\;C_2H_4$ and HCl in $CH_2Cl_2/H_2$ reaction system were the major products with some minor products including chloroethylenes. The $CH_2Cl_2$/Ar reaction system gives poor carbon material balance above reaction temperature of $750^{\circ}C$. Chloroethylenes and soot were found to be the major products and small amounts of $CH_3Cl$ and $C_2H_2$ were formed above $750^{\circ}C$ in $CH_2Cl_2$/Ar. The thermal decomposition reactions of chloroform($CHCl_3$) with argon reaction atmosphere in the absence or the presence of $CH_4$ were carried out using the same tubular flow reactor. The slower $CH_3Cl$ decay occurred when $CH_4$ was added to $CH_3Cl$/Ar reaction system. This is because :$CCl_2$ diradicals that had been produced from $CHCl_3$ unimolecular dissociation reacted with $CH_4$. It appears that the added $CH_4$ worked as the :$CCl_2$ scavenger in the $CHCl_3$ decomposition process. The product distributions for $CHCl_3$ pyrolysis under argon bath gas were distinctly different for the two cases: one with $CH_4$ and the other without $CH_4$. The important pyrolytic reaction pathways to describe the important features of reagent decay and intermediate product distributions, based upon thermochemistry and kinetic principles, were proposed in this study.

Pressure Dependence on the Aquation of s-cis-[Co(ee)$Cl_2$]+ and s-cis-[Co(eee)$Br_2$]+ ions (s-cis-$[Co(eee)Cl_2$]^+ 및 s-cis-$[Co(eee)Br_2]^+ $착이온의 수화반응에 미치는 압력의 영향)

  • Jong-Jae Chung;Sung-Oh Bek
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.318-322
    • /
    • 1988
  • We studied the aquation reaction of s-cis-$[Co(eee)Cl_2]^+$ and s-cis-$[Co(eee)Br_2]^+$ complex ions under the various temperatures and pressures. In these complexes eee is $NH_2-CH_2CH_2-S-CH_2CH_2-NH_2$. The rate law of the aquation reactions of these two complexes obeys $Rate = k_{obsd}$[CO(III)], where rate constants of s-cis-$Co(eee)Cl_2]^+$ and s-cis-$[Co(eee)Br_2]^+$ respectively are $0.687{\times}10^{-4}$ $sec^{-1}$ and $4.10{\times}10^{-4}$ $sec^{-1}$ in condition of 0.1M $HClO_4\;and\;40^{\circ}C$. In the same condition, the activation entropies of s-cis-[Co(eee)$Cl_2$]+ and s-cis-(Co(eee)Br_2$]+ complexes respectively are -15.5 eu and -7.54eu, and the activation volumes are $-4.6cm^3mole^{-1}$ and $-4.2cm^3mole^{-1}$. From these data, we could infer the mechanism of the aquation reaction as the interchange dissociation (Id) mechanism.

  • PDF

Exchange Reaction Mechanism of $Pb(II)-N_2O_m$ Macrocyclic Complexes by $^{207}Pb-NMR$ Spectroscopy ($^{207}Pb-NMR$ 분광법에 의한 $Pb(II)-N_2O_m$계 거대고리 리간드 착물형성 반응의 교환 메카니즘)

  • Kim, Jeong;Yun, Chang Ju;Yu, Han Jun;Kim, Geon;Kim, Si Jung
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.1
    • /
    • pp.41-49
    • /
    • 1994
  • Exchange reaction mechanisms of the Pb(II) ion for the complexes between Pb(II) ion and nitrogen oxygen donor macrocyclic ligands, such as 1,13-diaza-3,4 : $1011-dibenzo-59-dioxacyclohexa-decane(NtnOtnH_4)$, 1,15-diaza-3,4 : $1213-dibenzo-5811-trioxacycloheptadecane(NenOdienH_4)$, and 1,15-diaza-3,4 : $1213-dibenzo-5811-trioxacyclooctadecane(NtnOdienH_4)$, were studied by $^{207}Pb-NMR$ spectroscopy in N,N'-dimethylformamide(DMF) solutions. The associative-dissociative mechanism dominated in $NtnOtnH_4-Pb(II)$ and $NtnOdienH_4-Pb(II)$ system. For $NenOdienH_4-Pb(II)$ system, the bimolecular exchange mechanism prevailed below $-5^{\circ}C$, and both bimolecular exchange and associative-dissociative mechanism dominated above $+5^{\circ}C.$ The order of activation energies for dissociation was $NtnOdienH_4\;<\;NtnOtnH_4\;<\;NenOdienH_4$ which was reverse to the order of stabilities.

  • PDF

Na3PO4 Flame Retardant Treatment on Lyocell Fiber for Thermal Stability and Anti-oxidation Properties (라이오셀의 열 안정 및 내산화 특성 향상을 위한 Na3PO4 내염화 처리)

  • Kim, Hyeong Gi;Kim, Eun Ae;Lee, Young-Seak;In, Se Jin
    • Fire Science and Engineering
    • /
    • v.29 no.2
    • /
    • pp.25-32
    • /
    • 2015
  • The improved thermal stability and anti-oxidation properties of lyocell fiber were studied based on flame retardant treatment by using $Na_3PO_4$ solution. The optimized conditions of flame retardant treatment were studied on various concentrations of $Na_3PO_4$ and the mechanism was proposed through experimental results of thermal stability and anti-oxidation. The integral procedural decomposition temperature (IPDT), limiting oxygen index (LOI) and activation energy ($E_a$) increased 30, 160% respectively via flame retardant treatment. It is noted that thermal stability and anti-oxidation improved based on char and carbon layer formation by dehydrogenation and dissociation of C-C bond resulting the hindrance of oxygen and heat energy into polymer resin. The optimized conditions for efficient flame retardant property of lyocell fiber were provided using $Na_3PO_4$ solution and the mechanism was also studied based on experimental results such as initial decomposition temperature (IDT), IPDT, LOI and $E_a$.

Study of characteristics of $AgGaS_2$/GaAs epilayer by hot wall epitaxy (HWE 방법에 의한 $AgGaS_2$/GaAs epilayer 성장과 특성)

  • Hong, K.J.;Jeong, J.W.;Bang, J.J.;Jin, Y.M.;Kim, S.H.;Yoe, H.S.;Yang, H.J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.08a
    • /
    • pp.84-91
    • /
    • 2002
  • The stochiometric composition of $AgGaS_2$/GaAs polycrystal source materials for the $AgGaS_2$/GaAs epilayer was prepared from horizontal furnace. From the extrapolation method of X-ray diffraction patterns it was found that the polycrystal $AgGaS_2$/GaAs has tetragonal structure of which lattice constant an and Co were 5.756 $\AA$ and 10.305 $\AA$, respectively. $AgGaS_2$/GaAs epilayer was deposited on throughly etched GaAs(100) substrate from mixed crystal $AgGaS_2$/GaAs by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were $590^{\circ}C$ and $440^{\circ}C$ respectively. The crystallinity of the grown $AgGaS_2$/GaAs epilayer was investigated by the DCRC (double crystal X-ray diffraction rocking curve). The optical energy gaps were found to be 2.61 eV for $AgGaS_2$/GaAs epilayer at room temperature. The temperature dependence of the photocurrent peak energy is well explained by the Varshni equation, then the constants in the Varshni equation are given by $\alpha=8.695{\times}10^{-4}$ eV/K, and $\beta=332K$. From the photocurrent spectra by illumination of polarized light of the $AgGaS_2$/GaAs epilayer, we have found that crystal field splitting ${\Delta}Cr$ was 0.28 eV at 20 K. From the PL spectra at 20 K, the peaks corresponding to free and bound excitons and a broad emission band due to D-A pairs are identified. The binding energy of the free excitons are determined to be 0.2676 eV and 0.2430 eV and the dissociation energy of the bound excitons to be 0.4695 eV.

  • PDF