• Title/Summary/Keyword: $C_{3v}$ conformation

Search Result 38, Processing Time 0.019 seconds

Structure Identification of 1,2-Disubstituted Chiral Calix[4]arene : X-Ray and NMR Analysis of 25-(3,5-Dinitrobenzoyloxy)-26-methoxy-27,28-dihydroxycalix[4]arene

  • 박영자;신정미;남계춘;김종민;국승근
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.7
    • /
    • pp.643-647
    • /
    • 1996
  • 1,2-Disubstituted chiral calix[4]arene "25-(3,5-dinitrobenzoyloxy)-26-methoxy-27,28-dihydroxycalix[4]arene" was synthesized by the reaction of 25-(3,5-dinitrobenzoyloxy)-calix[4]arene with methyl iodide in the presence of K2CO3. Methylation was occurred at the 26-position of calix[4]arene. The partial cone conformation and 1,2-substitution were characterized based on the 1H NMR, 13C NMR and X-ray diffraction analysis. The crystal structure has been determined by X-ray diffraction method. The crystals are orthorhombic, Pbca, a=10.652(1), b=17.687(1), c=32.247(3) Å, Z=8, V=6075.4(9) Å3, Dc=1.38gcm-3. The intensity data were collected on an Enraf-Nonius CAD-4 Diffractometer with a graphite monochromated Cu-Kα radiation. The structure was solved by direct method and refined by full-matrix least-squares methods to a final R value of 0.050 for 2368 observed reflections. The molecule is in the partial cone conformation. It has two strong intramolecular hydrogen bonds of O(1D)-H…O(1C)-H…O(1B).

Solution Structure of the Cytoplasmic Domain of Syndecan-3 by Two-dimensional NMR Spectroscopy

  • Yeo, In-Young;Koo, Bon-Kyung;Oh, Eok-Soo;Han, Inn-Oc;Lee, Weon-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.5
    • /
    • pp.1013-1017
    • /
    • 2008
  • Syndecan-3 is a cell-surface heparan sulfate proteoglycan, which performs a variety of functions during cell adhension process. It is also a coreceptor for growth factor, mediating cell-cell and cell-matrix interaction. Syndecan-3 contains a cytoplasmic domain potentially associated with the cytoskeleton. Syndecan-3 is specifically expressed in neuron cell and has related to neuron cell differentiation and development of actin filament in cell migration. Syndecans each have a unique, central, and variable (V) region in their cytoplasmic domains. And that region of syndecan-3 may modulate the interactions of the conserved C1 regions of the cytoplasmic domains by tyrosine phosphorylation. Cytoplasmic domain of syndecan-3 has been synthesized for NMR structural studies. The solution structure of syndecan-3 cytoplasmic domain has been determined by two-dimensional NMR spectroscopy and simulated-annealing calculation. The cytoplasmic domain of the syndecan proteins has a tendency to form a dimmer conformation with a central cavity, however, that of syndecan-3 demonstrated a monomer conformation with a flexible region near C-terminus. The structural information might add knowledge about the structure-function relationships among syndecan proteins.

Crystal Structure of cis-(Malonato)[(4R,5R)-4,5-bis(Aminomethyl)-2-Isopropyl-1,3-Dioxolane]Platinum(II), A Potent Anticancer Agent

  • Cho, Sang-Woo;Yongkee Cho;Kim, Dai-Kee;Wanchul Shin
    • Korean Journal of Crystallography
    • /
    • v.11 no.1
    • /
    • pp.22-27
    • /
    • 2000
  • The structure of cis-(malonato)[(4R,5R)-4,5-bis(aminomethyl)-2-isopropyl-1,3-dioxolane]platinum(II) with a potent anticancer activity has been determined by the X-ray crystallographic method. Crystal data are as follows: Pt(C/sub 11/H/sub 20/N₂O/sub 6/), M/sub 4/=471.38, monoclinic, P2₁, a=7.112(1), b=33.615(3), c=7.135(1)Å, β=116.80(1)°, V=1522.6(3)Å, and Z=4. The two independent molecules with very similar structures are approximately related by pseudo two-fold screw axis symmetry, which makes the monolinic cell look like the orthorhombic cell with one molecule in the asymmetric unit and space group C222₁. The crystal packing mode is similar to that of the analogue with the dimethyl substituents instead of the isopropyl group. The Pt atom is coordinate to two O and two N atoms in a square planar structure. The six-membered chelate ring in the leaving ligand assumes a conformation intermediate between the half chair and the boat forms. The seven-membered ring in the carrier ligand assumes a twist-chair conformation and the oxolane ring assumes an envelope conformation. Crystal packing consists of the extensive hydrogen-bonding network in the two-dimensional molecular layers and weak van der Waals interactions between these layers.

  • PDF

Refinement of the Structure of p-Dimethylaminobenzaldehyde 4-(p-Ethoxyphenyl) Thiosemicarbazone (p-Dimethylaminobenzaldehyde 4-(p-Ethoxyphenyl) Thiosemicarbazone구조의 정밀화)

  • Seo, Il-Hwan;Seo, Chu-Myeong;Park, Yeong-Ja
    • Korean Journal of Crystallography
    • /
    • v.2 no.1
    • /
    • pp.12-16
    • /
    • 1991
  • C18H22N4OS, Mr=342.47, monoclinic, P2₁/c,a=11.802(2), b=31.962(2), c=9.829(2)A, β=100.12(1)˚, V=3694.8A3,F(000)=1472, Z=8, Dx=1.246 Mg m-3, Dm=1.17Mg m-3,λ=0.71073 A, μ=0.15mm-1, T=294 K. final R=0.0856 for 3718 observed reflection (Fo>3σ(Fo)) There are two molecules in an asymmetric unit and a major difference between these molecules is in the C(9)-N(1)-C(6)-C(7) torsion angles [58.8(8)˚and 1(1)˚]. Both molecules have intramolecular N(1)-H(10)'N(3) hydrogen bonds [ 2.613(7) and 2.566(7) A] and assume V-shaped conformation with N(2) atoms at the verices. The two independent molecules are linked by the two N(2)-H(11)'S' hydrogen bonds[3.367(5) A and 3.421(4)A] and the dimergen are held together by van der Waals forces.

  • PDF

Crystal Structure of Nalidixic Acid (Nalidixic Acid의 결정구조)

  • 김문집;신준철
    • Korean Journal of Crystallography
    • /
    • v.6 no.2
    • /
    • pp.98-102
    • /
    • 1995
  • The crystal structure of -Ethyl-1,4-dihydro-7-methyl-1,8-naphthyridin-4-one-3-carboxylic acid [Nalicixic Acid] has been determined from single crystal X-ray diffraction study; C12H12N2O3, monoclinic, P21/c, a=8.910(2)Å, b=13.145(3)Å, c=9.370(3)Å, β =100.06(2)°, V=1080.6Å, T=293K, Z=4, CuKα(λ=1.5418Å). The molecular structure was solved by direct method and refined by full-matrix least squares to a final R=0.055 for 1555 unique observed [F0>4σ(F0)] reflections and 166 parameters. The conformation of the molecule is stabilized by an intramolecular O(17)-H(17)…O(14) hydrogen bond [2.525(2)Å, 144.3(10)°].

  • PDF

The Molecular and Crystal Structure of tricyclazole, $C_9H_7N_3S$ (Tricyclazole, $C_9H_7N_3S$ 의 분자 및 결정구조)

  • Keun Il Park;Young Kie Kim;Sung Il Cho;Man Hyung Yoo
    • Korean Journal of Crystallography
    • /
    • v.13 no.3_4
    • /
    • pp.152-157
    • /
    • 2002
  • The molecular and crystal structure of Tricyclazole, C/sub9/H/sub7/N₃S, has been determined by single crystal x-ray diffraction study. Crystallographic data for title compound: Pca2₁, a=14.889(1) Å, b=7.444(1) Å, c=15.189(2) Å, V=1683.3(3) ų, Z= 8. The molecular structure model was solved by direct methods and refined by full-matrix least-squares. The final reliable factor, R, is 0.047 for 1533 independent reflections (F/sub o//sup 2/)). The asymmetry unit contains two molecules which are in plate conformation, parallel to each other and related by a pseudo four-fold screw on the b-direction.

Synthesis and Molecular Structure of Calix[4]arene Butanoate 1,2-Alternate Conformer

  • 노광현;박영자;김근희;신정미
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.5
    • /
    • pp.447-452
    • /
    • 1996
  • Three conformational isomers of calix[4]arene butanoate were isolated from the reaction of calix[4]arene and butanoyl chloride in the presence of NaH and their structures were determined by NMR spectra as 1,2-alternate 2a, partial cone 2b and 1,3-alternate conformer 2c, respectively. The crystal structure of 2a has been determined by X-ray diffraction method. The crystals are monoclinic, space group C2/c, a=18.435 (4), b=13.774 (2), c=16.941 (3) Å, β=116.23 (1)°, Z=4, V=3858.8 (12)Å3, Dc=1.21 g cm-3, Dm=1.21 g cm-3. The molecule is in the 1,2-alternate conformation. It has two-fold symmetry axis along the line connecting between C (7AA') and C (7BB') parallel to the b axis of crystal lattice.

A Study on the Preparation and Dielectric Characteristic of $\beta$-PVDF Vapor Deposited Thin Films by Applied Electric Field Method (전계인가법을 이용한 $\beta$-PVDF 증착 박막의 제조와 유전특성에 관한 연구)

  • 박수홍;이덕출
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.3
    • /
    • pp.221-228
    • /
    • 1998
  • In this study, the $\beta$-Polyvinylidene fluoride(PVDF) thin films were fabricated by physical vapor deposition method. Also, the properties of dielectric relaxation were studied to understand carrier's behavior of PVDF thin films, to be regarded as the excellent piezo and pyroelectricity. In the process of vapor deposition, the $\beta$-PVDF thin films have been fabricated under the condition of the substrate temperature at 3$0^{\circ}C$, the applied electric field at 142.8kV/cm and the pressure at 2.0${\times}10^{-5}$torr. The dielectric properties of PVDF have been studied in the frequency range 10Hz to 1MHz at temperature from 30 to $100^{\circ}C$. The relative dielectric constant of $\alpha$ and $\beta$-PVDF were 6.8 and 9.8, respectively, under a frequency of 1kHz. Such a phenomenon was caused by the decrease in intermolecular forces originated by the phase-transition from the TGTG' molecular conformation to the TT planar zig-zag conformation. And the relative dielectric constant is increased as a measuring temperature increases, because of the reduction of relaxation time caused by the decrease of intermolecular force.

  • PDF

The Crystal and Molecular Structure of 6-Ethyl-5,6-Dihydrouracil (6-에틸-5,6-디히드로우라실의 결정 및 분자구조)

  • An, Choong Tai
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.3
    • /
    • pp.161-166
    • /
    • 1996
  • 6-ethyl-5,6-dihydrouracil($C_6H_10N_2O_2$) is monoclinic, space group $$P2_{1}c}$$ with a=10.302(2), b=10.419(3), $c=7.095(1)\AA$, $\beta=106.6(0)$, Z=4, $V=729.7(3)\AA$^3$$, $D_c=1.29 g/cm^3,\;{\lambda}(MoK\alpha)=0.71073\AA$, $\mu=0.010cm^{-1}$, F(000)=304, and R=0.054 for 1070 unique observed reflection with F>4.0 $\sigma(F).$ The structure was solved by direct methods and refined by full-matrix least-squares refinement with the fixed C-H bond length at $0.96\AA.$ The hydrouracil molecule makes an envelope conformation with the ethyl substituent oriented to an axial position attainable to a varying degree of steric strain. There are two intermolecular hydrogen-bondings via N-H---O interactions, being nearly parallel to the 100 plane. The shortest distance between molecules is $3.187\AA$ of C(4) and O(8) (-x,-y, 1-z).

  • PDF

Crystal Structure of 1-Cyclopropyl-7-(2,7-diazabicyclo[3.3.0]oct-4-en-7-yl)-6-fluoro-8-methoxy-4-oxo-1,4-dihydroquinoline-3-carboxylic acid (HCI salt) (1-Cyclopropyl-7-(2,7-diazabicyclo[3.3.0]oct-4-en-7-yl)-6-fluoro-8-methoxy-4-oxo-1,4-dihydroquinoline-3-carboxylic acid 염산염의 결정구조)

  • 김문집;신준철
    • Korean Journal of Crystallography
    • /
    • v.6 no.2
    • /
    • pp.103-110
    • /
    • 1995
  • The crystal structure of 1-Cyclopropyl-7-(2,7-diazabicyclo[3.3.0]oct-4-en-7-yl)-6-fluoro-8-methoxy-4-oxo-1,4-dihydroquinoline-3-carboxylic acid (HCI salt) has been determined from single crystal x-ray diffraction study ; C20H21N3O4FCl, Monoclinic, C2/c, a=28.349(2)Å, b=11.941(2)Å, c=12.806(2)Å, β=96.428(9)°, V=4307.8Å3, T=296(2)K, Z=8, CuKα(λ=1.5418Å). The molecular structure was solved by direct method and refined by full-matrix least squares to a final R=4.96% for 2258 unique observed F0>4σ(F0) reflections and 293 parameters. The conformation of the molecule is stabilized by an intramolecular O(28)-H(28)…O(25) [2.517(4)Å, 156.7(447)°] hydrogen bond. Intermoleculars distances correspond to van der Waals contacts.

  • PDF