• Title/Summary/Keyword: $C_{3}F_{8}$ molecule

Search Result 30, Processing Time 0.029 seconds

Determination of the Inelastic cross Sections for $C_{3}F_{8}$ Molecule by electron Swarm Study

  • Jeon, Byung-Hoon;Ha, Sung-Chul;Yang, Jeong-Mo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.2 no.1
    • /
    • pp.7-11
    • /
    • 2001
  • We measured the electron transport coefficients, the electron drift velocity, W, and the longitudinal diffusion coefficient, $D_{L}$, over the E/N range from 0.03 to 100 Td and gas pressure range from 0.133 to 122 kPa in the 0.526% and 5.05% $C_{3}F_{8}$-Ar mixtures by the double shutter drift tube with variable drift distance. And we calculated these electron transport coefficients by using multi-term approximation of Boltzmann equation analysis. We determined the electron collision cross sections set for $C_{3}F_{8}$ molecule by the comparison of measurement and calculation. Our special attention in the present study was focused upon the inelastic collision cross sections of the $C_{3}F_{8}$ molecule.

  • PDF

Determination of an Inelastic Collision Cross Sections for C3F8 Molecule by Electron Swarm Method (전자군 방법에 의한 C3F8분자가스의 비탄성충돌단면적의 결정)

  • Jeon Byung-Hoon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.3
    • /
    • pp.301-306
    • /
    • 2006
  • The electron drift velocity W and the product of the longitudinal diffusion coefficient and the gas number density $ND_{L}$ in the $0.525\;\%$ and $5.05\;\%$ $C_{3}F_8-Ar$ mixtures were measured by using the double shutter drift tube with variable drift distance over the E/N range from 0.03 to 100 Td and gas pressure range from 1 to 915 torr. And we determined the electron collision cross sections set for the $C_{3}F_8$ molecule by STEP 1 of electron swarm method using a multi-term Boltzmann equation analysis. Our special attention in the present study was focused upon the vibrational excitation and new excitations cross sections of the $C_{3}F_8$ molecule.

Determination of Inelastic Collision Cross Sections for $C_{3}F_{8}$ Molecule by Multi-term Boltzmann Equation Analysis

  • Jeon, Byung-Hoon;Ha, Sung-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.934-941
    • /
    • 2000
  • We measured the electron transport coefficients, the electron drift velocity W and the longitudinal diffusion coefficient $D_{L}$ in the 0.526% and 5.05% $C_{3}F_{8}$-Ar mixtures over the E/N range from 0.01 Td to 100 Td by the double shutter drift tube, and compared the measured results by Hunter et al. with those. We determined the inelastic collision cross sections for the $C_{3}F_{8}$ molecule by the comparison of the present measurements and the calculation of electron transport coefficients in the $C_{3}F_{8}$-Ar mixtures by using a multi-term Boltzmann equation analysis.

  • PDF

Crystal Structure of 3-Methyl-4-Methoxy-4'-Nitrostilbene

  • 서일환;김문집
    • Korean Journal of Crystallography
    • /
    • v.3 no.2
    • /
    • pp.67-71
    • /
    • 1992
  • The crystal structure of the title compound was determined from single crystal X-ray dirt fraction study : C16H16NO3, Mr=271.316, orthorh ombic, Aba2, a=15.750(3), b=13.470(2), c=13.356 (2) A, V=2833A, Z=8, Dx=1.26 Mgm-3, λ(MoK a) =0.71069A, r=0.51mm-2, F(000)=1136, T=291 K, R=0.0414 for 728 unique observed [F≥3e(F)] reflections and 240 parameters. The molecule is nearly planar within 0.2 A with the torsion angle -179(2)°for C(4)-C(7)-C(8)-C(9).The into rmolecular interactions are mainly by van der Waals force with the nearest intermolecular distance 3.647A between O(3) and C(4) translated by half unit along band c-axes.

  • PDF

Crystal Structure of Nalidixic Acid (Nalidixic Acid의 결정구조)

  • 김문집;신준철
    • Korean Journal of Crystallography
    • /
    • v.6 no.2
    • /
    • pp.98-102
    • /
    • 1995
  • The crystal structure of -Ethyl-1,4-dihydro-7-methyl-1,8-naphthyridin-4-one-3-carboxylic acid [Nalicixic Acid] has been determined from single crystal X-ray diffraction study; C12H12N2O3, monoclinic, P21/c, a=8.910(2)Å, b=13.145(3)Å, c=9.370(3)Å, β =100.06(2)°, V=1080.6Å, T=293K, Z=4, CuKα(λ=1.5418Å). The molecular structure was solved by direct method and refined by full-matrix least squares to a final R=0.055 for 1555 unique observed [F0>4σ(F0)] reflections and 166 parameters. The conformation of the molecule is stabilized by an intramolecular O(17)-H(17)…O(14) hydrogen bond [2.525(2)Å, 144.3(10)°].

  • PDF

Crystal Structure of 1-Cyclopropyl-7-(2,7-diazabicyclo[3.3.0]oct-4-en-7-yl)-6-fluoro-8-methoxy-4-oxo-1,4-dihydroquinoline-3-carboxylic acid (HCI salt) (1-Cyclopropyl-7-(2,7-diazabicyclo[3.3.0]oct-4-en-7-yl)-6-fluoro-8-methoxy-4-oxo-1,4-dihydroquinoline-3-carboxylic acid 염산염의 결정구조)

  • 김문집;신준철
    • Korean Journal of Crystallography
    • /
    • v.6 no.2
    • /
    • pp.103-110
    • /
    • 1995
  • The crystal structure of 1-Cyclopropyl-7-(2,7-diazabicyclo[3.3.0]oct-4-en-7-yl)-6-fluoro-8-methoxy-4-oxo-1,4-dihydroquinoline-3-carboxylic acid (HCI salt) has been determined from single crystal x-ray diffraction study ; C20H21N3O4FCl, Monoclinic, C2/c, a=28.349(2)Å, b=11.941(2)Å, c=12.806(2)Å, β=96.428(9)°, V=4307.8Å3, T=296(2)K, Z=8, CuKα(λ=1.5418Å). The molecular structure was solved by direct method and refined by full-matrix least squares to a final R=4.96% for 2258 unique observed F0>4σ(F0) reflections and 293 parameters. The conformation of the molecule is stabilized by an intramolecular O(28)-H(28)…O(25) [2.517(4)Å, 156.7(447)°] hydrogen bond. Intermoleculars distances correspond to van der Waals contacts.

  • PDF

Template Synthesis of New Nickel(Ⅱ) Comlexes of 14-Membered Pentaaza Macrocyclic Ligands: Effects of C-Alkyl and N-Hydroxyalkyl Pendant Arms on the Solution Behaviors of the Complexes

  • 강신걸;최장식;김성진
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.6
    • /
    • pp.518-523
    • /
    • 1995
  • New square planar nickel(Ⅱ) complexes with various 1-alkyl (4a-4c) and 1-hydroxyalkyl (4d-4f) derivatives of the 14-membered pentaaza macrocycle 8-ethyl-8-nitro-1,3,6,10,13-pentaazacyclotetradecane have been synthesized by two-step metal template condensation reactions of ethylenediamine, nitroethane, formaldehyde, and appropriate primary amines. The nitro group and/or hydroxyl group of 4a-4f are not directly involved in the coordination. The nickel(Ⅱ) complexes exist in coordinating solvents such as MeCN, Me2SO, and H2O as equilibrium mixtures of the square planar [Ni(L)]2+(L=4a-4f) and octahedral species [Ni(L)S2]2+(S=solvent molecule). Although the ligand field strength and redox potentials of the complexes are not affected by the nature of the substituents, the formation of octahedral species for 4d-4f in MeCN is strongly restricted by the hydroxyl group. Synthesis, characterization, and solution behaviors of the nickel(Ⅱ) complexes are described.

The Crystal Structure of p-Phenylenediamine Dihydrochloride (p-Phenylenediamine Dihydrochloride의 結晶構造)

  • Koo, Chung-Hoe;Min, Tae-Won;Sin, Hyun-So
    • Journal of the Korean Chemical Society
    • /
    • v.9 no.3
    • /
    • pp.142-147
    • /
    • 1965
  • The crystal structure of p-phenylenediamine dihydrochloride has been determined from X-ray oscillation and Weissenberg photographs. The crystal is triclinic, space group $C_i1-P{\bar\1},$ with cell dimensions $a = 4.38{\pm}0.02, b = 5.90{\pm}0.02, c = 8.76{\pm}0.03 {\AA}, {\alpha} = 110{\AA}1, {\beta} = 96{\pm}1\; and\; {\gamma} = 101{\pm}1^{\circ}.$ There is one molecule in the unit cell. The atomic coordinates were found by means of two-dimensional Fourier projection and ($F_o-F_c$) projection along the a, b and c axes. The structure of p-phenylenediamine dihydrochloride is discussed in relation to the structures of hexamethylenediamine dihydrochloride, hexamethylenediamine dihydroiodide and ethylenediamine dihydrochloride.

  • PDF

The analysis of electron transport coefficients in $CF_4$ molecular gas by multi-term approximation of the Boltzmann equation (다항근사 볼츠만 방정식에 의한 $CF_4$ 분자가스의 전자수송계수 해석)

  • Jeon, Byung-Hoon;Park, Jae-June;Ha, Sung-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.141-144
    • /
    • 2001
  • An accurate cross sections set are necessary for the quantitatively understanding and modeling of plasma phenomena. By using the electron swarm method. we determine an accurate electron cross sections set for objective atoms or molecule at low electron energy range. In previous paper, we calculated the electron transport coefficients in pure $CF_4$ molecular gas by using two-term approximation of the Boltzmann equation. And by using this simulation method. we confirmed erroneous calculated results of transport coefficients for $CF_{4}$ molecule treated in this paper having 'C2v symmetry' as $C_{3}H_{8}$ and $C_{3}F_{8}$ which have large vibrational excitation cross sections which may exceed elastic momentum transfer cross section. Therefore, in this paper, we calculated the electron transport coefficients(W and $ND_L$) in pure $CF_4$ gas by using multi-term approximation of the Boltzmann equation by Robson and Ness which was developed at lames-Cook university, and discussed an application and/or validity of the calculation method by comparing the calculated results by two-term and multi-term approximation code.

  • PDF

The analysis of electron transport coefficients in CF$_4$ molecular gas by multi-term approximation of the Boltzmann equation (다항근사 볼츠만 방정식에 의한 CF$_4$분자가스의 전자수송계수 해석)

  • 전병훈;박재준;하성철
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.141-144
    • /
    • 2001
  • An accurate cross sections set are necessary for the quantitatively understanding and modeling of plasma phenomena. By using the electron swarm method, we determine an accurate electron cross sections set for objective atoms or molecule at low electron energy range. In previous paper, we calculated the electron transport coefficients in pure CF$_4$ molecular gas by using two-term approximation of the Boltzmann equation. And by using this simulation method, we confirmed erroneous calculated results of transport coefficients for CF$_4$ molecule treated in this paper having 'C2v symmetry'as C$_3$H$_{8}$ and C$_3$F$_{8}$ which have large vibrational excitation cross sections which may exceed elastic momentum transfer cross section. Therefore, in this paper, we calculated the electron transport coefficients(W and ND$_{L}$) in pure CF$_4$ gas by using multi-term approximation of the Boltzmann equation by Robson and Ness which was developed at James-Cook university, and discussed an application and/or validity of the calculation method by comparing the calculated results by two-term and multi-term approximation code.e.

  • PDF