• Title/Summary/Keyword: $CO_2$-rich springs

Search Result 7, Processing Time 0.021 seconds

Genesis and Hydrochemistry of $CO_2$-rich Springs from Kyungpook Province, Korea (경북지역 탄산수의 생성기원과 수리화학적 특성)

  • 정찬호
    • Economic and Environmental Geology
    • /
    • v.35 no.2
    • /
    • pp.121-136
    • /
    • 2002
  • The $CO_2$-rich springs in the Kyungpook Province has been found at 16 locations. Most of the $CO_2$-rich springs outflow along either fault zones or the geologic boundary between Mesozoic granites and their adjacent rocks. The $CO_2$-rich water samples show a high $CO_2$ concentration ( $P_{CO2}0.46 to 5.21 atm), weak acidic pHs, wide electrical conductivity values ranging from 422 to 2,280 $\mu\textrm{S}$/cm, and high re content. They are classified into the ca-HC $O_3$ type in chemical composition.$\delta$$^{18}$ O and $\delta$$^2$H data indicate that $CO_2$-rich water is meteoric origin. The $\delta$$^{13}$ C values (-1.5$\textperthousand$ to -6.1$\textperthousand$ PDB) suggest that dissolved $H_2$C $O_3$$^{0}$ C $O_3$- are mainly derived from a deep-seated $CO_2$ and carbonate minerals. The thermodynamic equilibrium state between $CO_2$-rich water and major minerals, and hydrochemical characteristics indicate that major source minerals determining the chemical composition of $CO_2$-rich water are carbonate minerals, plagioclase, K-feldspar and Fe-oxides. Under high $CO_2$ pressure and the weak acidic condition, most of the $CO_2$-rich water samples are thermodynamically in the dissolution state with respect to albite and carbonate minerals.

Occurrence, Geochemistry and Origin of $Co_2$-rich Water from the Chungcheong Area, Korea (충청지역 탄산수의 산출양상, 지화학적 특성 및 생성기원)

  • 정찬호;김종근;이재영
    • Economic and Environmental Geology
    • /
    • v.34 no.2
    • /
    • pp.227-241
    • /
    • 2001
  • Several $Co_2$-rich springs in the Chungcheong area, Le., the Angsung spring, the Chojung spring, the Myungam spring, the Bukang spring and the Daepyung spring have been long known for their particular water chemistry. The occurrences of these springs are closely related to the geologic structure of Mesozoic granite such as dyke swarms, fault zones and the geologic boundary between granite and its adjacent gneiss. The $Co_2$-rich water samples show a high $Co_2$ concentration ($P_{CO2}$ 0.25 atm to 0.99 atm), weak acidic pHs and the electrical conductivity ranging from 101 to 2,950 ${\mu}$S/cm. The $Co_2$-rich water samples are classified into the Ca-$HC0_3$ type and the Ca(Na)-$HCO_3$) type in chemical composition. Environmental isotopic data $^{2}H/^{1}H, ^{18}O/^{16}O$) indicated that $Co_2$-rich water was meteoric origin. The ${\delta}^{13}C$ values of $Co_2$-rich water range from -3.1$\textperthousand$ to -6.8$\textperthousand$ PDB. The values indicate that $H_2CO_3^0$ and $HC0_3^-$ of the water samples are mainly originated from a deep-seated source and partly contributed from carbonatc minerals. The major minerals determining the chemistry of $Co_2$-rich watcr arc probably the carbonate minerals which are present as veins and secondary minerals, and the plagiocalse in granite and gneiss.

  • PDF

Hydrochemistry and Formation Environment of $CO_2$-rich Springs from the Kangwon Province (강원지역에서 산출되는 탄산천의 수리화학 및 생성환경)

  • 정찬호
    • Journal of the Mineralogical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.61-73
    • /
    • 2004
  • The purposes of this study are to investigate the occurrence, the hydrochemical characteristics and the origin of the $CO_2$-rich springs from the Kangwon Province, and to reanalyze the previous studied results of other researchers. The $CO_2$-rich water samples were collected at 13 locations in the Kangwon Province. The $CO_2$-rich water shows a high $CO_2$ concentration ($P_{CO2}$ 0.787 to 4.78 atm), weak acidic pHs, electrical conductivity values ranging from 422 to 2,280 $\mu$S/cm, and high Fe and F contents. The chemical compositions of $CO_2$-rich water from this study area are classified into three types; $Ca-HCO_3$, Ca(Na)-$HCO_3$, $Na-HCO_3$ types. The chemical data of $CO_2$-rich waters and their host rocks indicate that $Na-HCO_3$ type water are mainly influenced by biotite, K-feldspar granite, and Ca(Na)-HC $O_3$, type water is chiefly influenced by gneiss and carbonate minerals in granite. F and Fe contents of $CO_2$-rich waters are abundant in $Na-HCO_3$, and $Ca-HCO_3$ types, respectively. The results of this study suggest that the chemical composition $CO_2$-rich water is mainly controlled by the mineralogical composition of aquifer host rocks. Oxygen and deuterium isotope data indicate that $CO_2$-rich water is meteoric origin. The $\delta^{13}$C values (-0.3$\textperthousand$ to -6.2$\textperthousand$ PDB) suggest that dissolved carbonates are mainly derived from a deep-seated $CO_2$ and partly from carbonate minerals.

Geochemistry and Origin of $CO_2$-rich Groundwater from Sedimentary Rocks of Kyungsang System (경상계 퇴적암에서 산출되는 탄산지하수의 지화학적 특성과 생성기원)

  • 정찬호;이진국
    • The Journal of Engineering Geology
    • /
    • v.10 no.1
    • /
    • pp.51-62
    • /
    • 2000
  • The $CO_2$-richrich water pumps or springs out at two sites (Sinchon and Kohran) consisting of Cretaceous sedimentary rocks in Kyungpook area. The water has been long known as its soda pop-liketaste and therapeutic effect against calcium deficit, stomach and skin troubles, etc. The water arecharacterized by a high $CO_2$ concentration $(P_{CO2}=0.29~l.01 atm)$ and electrical conductance (1,093~2,810$\mu$S/cm). The $CO_2$-rich water belongs to Ca(Na)-$HCO_3$ type in chemical classification. The contents of Ca, Mg, Na, HCO$_3$ and Fe of $CO_2$-rich water show much higher values than those of general groundwater Environmental isotopic data $(^2H/^1H, ^{18}O/^{16}O and ^3H/^1H)$ indicate that the water is ofmeteoric origin recharged after 1950s. The $CO_2$ in the springs seems to be originated from deep-seatedsource related to acidic porphyry and granite nearby sedimentary rocks. Carbonate minerals and albiteare likely to be the major source minerals of the dissoved inorganic constituents in the $CO_2$-rich water.The equilibrium state between major minerals and $CO_2$-rich water was calculated by a thermodynamicprogram.

  • PDF

Hydrochemistry and Noble Gas Origin of Various Hot Spring Waters from the Eastern area in South Korea (동해안지역 온천유형별 수리화학적 특성 및 영족기체 기원)

  • Jeong, Chan-Ho;Nagao, Keisuke;Kim, Kyu-Han;Choi, Hun-Kong;Sumino, Hirochika;Park, Ji-Sun;Park, Chung-Hwa;Lee, Jong-Ig;Hur, Soon-Do
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.1
    • /
    • pp.1-12
    • /
    • 2008
  • The purpose of this study is to characterize the hydrogeochemical characteristics of hot spring waters and to interpret the source of noble gases and the geochemical environment of the hot spring waters distributed along the eastern area of the Korean peninsula. For this purpose, We carried out the chemical, stable isotopic and noble gas isotopic analyses for eleven hot spring water and fourteen hot spring gas samples collected from six hot spring sites. The hot spring waters except the Osaek hot spring water show the pH range of 7.0 to 9.1. However, the Osaek $CO_2$-rich hot spring water shows a weak acid of pH 5.7. The temperature of hot spring waters in the study area ranges from $25.7^{\circ}C$ to $68.3^{\circ}C$. Electrical conductivity of hot spring waters varies widely from 202 to $7,130{\mu}S/cm$. High electrical conductivity (av., $3,890{\mu}S/sm$) by high Na and Cl contents of the Haeundae and the Dongrae hot spring waters indicates that the hot spring waters were mixed with seawater in the subsurface thermal system. The type of hot springs in the viewpoint of dissolved components can be grouped into three types: (1) alkaline Na-$HCO_3$ type including sulfur gas of the Osaek, Baekam, Dukgu and Chuksan hot springs, and (2) saline Na-Cl type of the Haeundae and Dongrae hot springs, and (3) weak acid $CO_2$-rich Na-$HCO_3$ type of Osaek hot spring. Tritium ratios of the Haeundae and the Dongrae hot springs indicate different residence time in their aquifers of older water of $0.0{\sim}0.3$ TU and younger water of $5.9{\sim}8.8$ TU. The ${\delta}^{18}O$ and ${\delta}D$ values of hot spring waters indicate that they originate from the meteoric water, and that the values also reflect a latitude effect according to their locations. $^3He/^4He$ ratios of the hot spring waters except Osaek $CO_2$-rich hot spring water range from $0.1{\times}10^{-6}$ to $1.1{\times}10^{-6}$ which are plotted above the mixing line between air and crustal components. It means that the He gas in hot spring waters was originated mainly from atmosphere and crust sources, and partly from mantle sources. The Osaek $CO_2$-rich hot spring water shows $3.3{\times}10^{-6}$ in $^3He/^4He$ ratio that is 2.4 times higher than those of atmosphere. It provides clearly a helium source from the deep mantle. $^{40}Ar/^{36}Ar$ ratios of hot spring water are in the range of an atmosphere source.

Analysis of spatial interpretation and cultural valorization of groundwater resource using open data (공공데이터를 활용한 지하수자원의 공간적 해석과 문화적 가치부여에 대한 제안)

  • Han-Na, CHOI;Yong-Cheol, KIM;Jeong-Hyun, YU;Ye-Yeong, LEE;So-Jung, IN;Jong-Gyu, HAN
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.4
    • /
    • pp.81-93
    • /
    • 2022
  • There are many natural hot springs and mineral springs as well as the cultural heritage of the three kingdoms period in the Geum River basin including Chungcheong region. No specific regeneration and publicity plans for deteriorated facilities in this area has been presented. This study aims to suggest promising hot spots and complex water culture belt in the Chungcheong region and Geum River basin through the spatial interpretation of resources. The northern part of the Geum River basin is expected to become a therapeutic spring belt with many hot springs and CO2-rich springs. In the central and southern parts of the Geum River basin, it is considered that it will be possible to promote convergence publicity by using groundwater resources and cultural assets.

Estimation of reservoir temperatures and subsurface environments for $CO_2-rich$ springs in Kangwon Province (강원도 지역 탄산용출수에 대한 심부온도 및 심부환경의 추정)

  • 최현수;고용권;윤성택;배대석
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.520-523
    • /
    • 2003
  • 강원도 지역의 대표적인 탄산용출수에 대한 수리지구화학적 연구를 통하여 심부 지열 저장지의 온도와 심부환경을 추정하였다. 탄산용출수는 공통적으로 약산성의 pH와 높은 이온함량으로 특징되지만, 화학적으로는 Na-HCO$_3$형, Ca-Na-HCO$_3$형, 그리고 Ca-HCO$_3$형으로 뚜렷이 구분된다. 심부에서 생성된 탄산용출수가 지표로 상승하는 도중에 수반된 지표수 혼합차이로 인해 이런 화학조성의 차이가 유발된 것으로 판단된다. Na-HCO$_3$형 탄산수는 화학 조성상 ‘mature water’의 특징을 보여주는 반면, 다른 두 유형의 탄산수들은 ‘immature water’에 해당하였다. Na-HCO$_3$ 형 탄산수에 대하여 실리카, Na-K 및 Na-K-Ca 지온계를 적용한 결과, 약 l15-157도의 심부저장지 온도가 산출되었으며, 이 결과는 다성분 평형계를 이용한 추정 온도 (약 140-160도)와도 잘 일치하였다. 반면, Ca-HCO$_3$ 형 탄산수들은 지표수와의 혼합 때문에 상대적으로 낮고 넓은 범위의 추정 온도 (약 60-130도)를 나타내었다. 따라서 연구지역 내 탄산용출수의 심부저장지 온도는 Na-HCO$_3$형에 대해서만 타당하게 적용될 수 있으며, 약 140-160도일 것으로 추정된다.

  • PDF