• 제목/요약/키워드: $CO_2$ supply

검색결과 768건 처리시간 0.029초

인삼의 수분생리 1. 자생지관찰.재배 경험.기상요인과 근 및 엽의 특성 (Water Physiology of Panax ginseng. 1. Habitat observation. cultural experience, weather factors and characteristics of root and leaf)

  • 박훈
    • Journal of Ginseng Research
    • /
    • 제4권2호
    • /
    • pp.197-221
    • /
    • 1980
  • Habitat observation, cultural experience of old and present plantation, weather factors in relation to crop stand and water physiology of root and leaf were reviewed. According to habitat observation ginseng plants love water but plate wit talus well grow at drained place with high moisture content in air and soil while ginseng plants were not found in dry or wet place. According to cultivation experience ginseng plants require abundant water in nursery and main field but most old planters believe that ginseng plaints are draught-loving thus require little water. The experience that rain especially in summer i.e unfavorable might be due to mechanical damage of leaves arid leaf disease infection, or severe leaf fall which is caused by high air temperature and coinsided with rain. According to crop stand observation in relation to weather factors abunsant water increased each root weight but decreased total yield indicating tile increase of missing root rate. Rain in summer was unfavorable too. Though rain in June was favorable for high yield general experience that cloudy day and rain were unfavorable might be due to low light intensity under shade. Present leading planters also do loot consider the importance of water in main field. Water content is higher in top than in root and highest in central portion of root and in stem of top. For seedling the heavier the weight of root is tile higher the water content while it reveries from two years old. Water potential of intact root appeared to be -2.89 bar suggesting high sensitivity to water environment. Under water stress water content severly decreased only in leaf. Water content of leaf appeared to be 78% for optimum, below 72% for functional damage and 68% for perm anent wilting. Transpiration or curs Principally through stomata in lower side of leaf thus contribution of upper side transpiration decreased with the increase of intensity. Transpiration is greater in the leaves grown under high light intensity. Thus water content is lower with high light inte nsity under field condition indicating that light is probable cause of water stress in field. Transpiration reached maximum at 10K1ut The decrease of transpiration at higher temperature seems to be due to the decrease of stomata aperture caused by water stress. Severe decrease of photosynthesis under water stress seems to be principally due to functional damage which is not caused by high temperature and Partly due to poor CO2 supply. Water potential of leaf appeared to be -16.8 bar suggesting weakness in draught tolerance. Ginseng leaves absorb water under high humidity. Water free space of leaf disc is %mailer than that of soybean leaf and water uptake appears to be more than two steps.

  • PDF

경북지역 현대화 원예시설의 관리실태 조사분석 (Analysis of Research for the Actual State and Management of Automated Horticultural Facilities)

  • 정현교;이기명;박규식
    • 생물환경조절학회지
    • /
    • 제5권2호
    • /
    • pp.174-186
    • /
    • 1996
  • This study was carried out in order to understand the plan, design, constructing and actual condition of management of modernized horticultural facilities in Kyungpook Province which had been constructed from 1992 to 1995 funded by Government support. The aim of this study is to provide reference data for success of the forth project. It was performed by making up a question about driving of project and management condition of equipment after constructing. The results obtained from this study are as follows: 1. 73.5% of facilities horticulture farmhouse recognized that the prospect of greenhouse is bright, but 92.5% of the farmhouse also recognised that they need technical consultation on protected horticulture farming. Therefore, technical educations would must be enhanced about foundation of greenhouse and cultivation technique. 2. The holding times of explanatory meetings, cause of understanding to farmhouse, were one or two times in greenhouse construction, and 62.5% of the farmhouse expressed the insufficiency at the explanation and educational data. For this reason, it was judged that the construction contract had been delayed more than 5 months in 49.3% of the farmhouse after the decision of project budget. 3. In constructing after a contract, the rates of construction delay is 53.4% and defect occurrence is 41.1%. The biggest reasons of construction delay was insufficiency of worker and materials supply. Each percentage is 29.1%. And the reason of defect occurrence is badness of machinery equipment(62.9% ). 4. In management of greenhouse, a pipe-constructed plastic film greenhouse changes plastic film every one and three years because of sticking dust on plastic film. It was needed to about in cleaning technique of coverings. Because that used 3-5 years only half of the expected life span. 5. The order of broken rating in the subsidiary equipment is like this lollop ventilator (42.8%), a general control system(33.3%) especially, in the case of a general control system, the rate of all family can control is 52.7%. so, it is time to develop easy control equipment which every one could use as soon as possible. 6. When choose heat generator as decide capacity, the most priority is the mount of heat generator the percent is 45.5% heat generator and as decide model, the private purchase's percent is 77.3%. It is higher than a public bidding heat generator the percent is 22.7% heat generator when it compare with a public bidding. In the case of $CO_2$ generator, using rate is only 19.0%. The using rate is very low, so it needs education how to use depends on the way of the subsidiary equipment. 7. In the case of seedlings, it is asked to use factory-processed seedling effectively. because it's difficult to get security of labors(58.8%), hoped crops (55.9%) access same crops(29.4%) much more and changing of crops depends on market situation. that is the main reason the lack of knowhow.

  • PDF

사용후 핵연료 관리 정책과 국제 동향 (National Policy and Status on Management of Spent Nuclear Fuel)

  • 박원재
    • 방사성폐기물학회지
    • /
    • 제4권3호
    • /
    • pp.285-299
    • /
    • 2006
  • 2005년말 현재, 전세계 32개국에서 443기의 원자력발전소가 운영되고 있다. 현재 전체발전량은 약 3,000 TWh이며 전세계 전력공급의 약 16 퍼센트를 차지하고 있다. 2004년말 사용후핵 연료는 전세계 원전의 발전용량 368 GWe에서 매년 11,000 tHM 정도 발생되고 있으며 현재 운영중인 대부분의 원전이 가동정지가 예상되는 2020년에는 445,000 tHM까지 예상되고 있다. 이러한 관점에서, 사용후핵 연료 관리는 전체 IAEA 회원국에게는 그들이 취하고 있는 후행핵 연료주기 정책과 전략에 관계없이 국제협력 등을 통해 가까운 장래에 시급히 그리고 반드시 해결해야 할 필수 사안임이 분명하다. 지난 2006년 5월 15일부터 2주간 제2차 방사성폐기물안전협약 체약국회의가 오스트리아 IAEA본부에서 개최되었다. 동 회의에서 사용후 핵연료에 대한 국가 정책 및 전략, 그리고 그들의 현황, 향후 전망, 정책에 일차적으로 고려한 인자와 이행내용 등이 심층논의되었으며, 향후 개별 국가의 노력 및 국제협력의 방향 등이 확인되었다. 본 논문에서는 상기협약에서 논의된 사용후핵 연료 관리에 대한 국가정책 및 향후 추세 둥을 자세히 기술하였다. 또한 주요국가의 최근 이행내용도 요약정리 하였다.

  • PDF

선화아연바리스터 기반의 1-포트 서지보호장치의 최적 설계 기법 (Optimal Design Method of 1-Port Surge Protective Device Based on Zinc Oxide Varistor)

  • 정태훈;김용성;박근보;이승일
    • 한국산학기술학회논문지
    • /
    • 제19권4호
    • /
    • pp.93-102
    • /
    • 2018
  • 본 논문은 뇌격전류에 따른 저압 배전계통의 전자식 전력량계 및 배전 패널의 통신설비와 전원장치를 보호할 목적으로 사용하는 서지보호장치(SPD)에 관한 것이다. 서지보호장치(SPD)는 접속방식에 따라 1-포트 서지보호장치(SPD)와 감결합 요소를 포함한 2-포트 서지보호장치(SPD)로 구분된다. 뇌격전류에 대한 내부 시스템의 보호는 협조된 서지 보호체계를 이루는 계통적인 접근이 필요하다. 이에 대응하기 위해 이론적인 검토를 통해 피뢰구역(LPZ) 정의에 대한 고찰 및 해석을 진행하였다. 뇌서지에 의한 뇌격전류는 상당히 크기 때문에 하나의 서지보호장치(SPD)로 방호하기에는 한계가 발생하며, 이를 해결하기 위해 다단의 종속적으로 서지보호장치(SPD)를 설치하게 된다. 본 논문에서는 전력계통에 있어 한전계통에 연계되는 Incoming side가 아닌 건물 내에 설치되는 분기형 배전패널 내부의 전자식 전력량계 및 각종 통신(제어)설비를 보호할 목적으로 한전계통이 연계되는 MOF 단에 설치되는 LPZ0에 해당하는 피뢰기(LA, SA)와 보호협조를 이루는 LPZ1과 LPZ2의 경계영역에 설치하는 저압 배전계통용 II등급 서지보호장치(SPD)에 대해 설계를 하였다. 또한 감결합 요소가 없고, 부하 전류를 흘릴 수 있는 직렬 접속 방식의 1-포트 서지보호장치(SPD)에 대한 최적의 설계 방안을 도출하고 실험을 통해 기존의 방식과 비교하여 성능 개선과 관련한 검증을 실시하였다.

지역난방에 연계된 하이브리드 제습냉방시스템의 경제성 분석 (Thermoeconomic Analysis of Hybrid Desiccant Cooling System Driven by District Heating)

  • 안준;김재율;강병하
    • 대한기계학회논문집B
    • /
    • 제38권9호
    • /
    • pp.721-729
    • /
    • 2014
  • 지역난방에 연계한 하이브리드 제습냉방 시스템은 하절기 에너지 이용효율을 높일 수 있다. 실증실험을 통해 우리나라에 성공적으로 운전될 수 있다는 것을 확인한 하이브리드 제습냉방 시스템의 보급활성화를 위하여 경제성 분석을 실시하였다. 기존의 전기 에어컨과 냉방을 하면서 생기는 비용을 비교하는 것과 전기 에어컨을 제습냉방으로 대체하였을 때 발생하는 국가 편익을 계산하는 두 가지 관점에서 수행하였다. 분석결과 제습냉방은 30% 이상의 운전비용 절감효과가 있으며, 1기당 연간 0.079 TOE의 1차 에너지, 0.835 $TCO_2$ 절감효과가 있는 것으로 분석되었다. 2020년까지 68만세대에 제습냉방이 보급된다고 예상하면 463 MW의 전력대체 효과가 발생하는 것으로 분석되었다. 이러한 운전비용절감효과, 1차 에너지 절감 및 온실가스 배출 감소효과를 가지고 있는 제습냉방 시스템은 전기 에어컨에 비하여 초기 투자비용이 높기에 보급활성화를 위하여 적절한 정부의 보조금이 필요하다. 본 논문에서는 국가적 편익을 고려한 적절한 보조금을 산정하여 제습냉방 시스템의 보급방안을 제시하고자 한다.

Silver nanowires and nanodendrites synthesized by plasma discharge in solution for the catalytic oxygen reduction in alkaline media

  • 김회근;송면규;김동우;이상율
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2018년도 춘계학술대회 논문집
    • /
    • pp.62-62
    • /
    • 2018
  • Pt is still considered as one of the most active electrocatalysts for ORR in alkaline fuel cells. However, the high cost and scarcity of Pt hamper the widespread commercialization of fuel cells. As a strong candidate for the replacement of Pt catalyst, silver (Ag) has been extensively studied due to its high activity, abundance, and low cost. Ag is more stable than Pt in the pH range of 8~14 as the equilibrium potential of Ag/Ag+ being ${\approx}200mV$ higher than that of Pt/PtO. However, Ag is the overall catalytic activity of Ag for oxygen reduction reaction(ORR) is still not comparable to Pt catalyst since the surface Ag atoms are approximately 10 times less active than Pt atoms. Therefore, further enhancement in the ORR activity of Ag catalysts is necessary to be competitive with current cutting-edge Pt-based catalysts. We demonstrate the architectural design of Ag catalysts, synthesized using plasma discharge in liquid phase, for enhanced ORR kinetics in alkaline media. An attractive feature of this work is that the plasma status controlled via electric-field could form the Ag nanowires or dendrites without any chemical agents. The plasma reactor was made of a Teflon vessel with an inner diameter of 80 mm and a height of 80 mm, where a pair of tungsten(W) electrodes with a diameter of 2 mm was placed horizontally. The stock solutions were made by dissolving the 5-mM AgNO3 in DI water. For the synthesis of Agnanowires, the electricfield of 3.6kVcm-1 in a 200-ml AgNO3 aqueous solution was applied across the electrodes using a bipolar pulsed power supply(Kurita, Seisakusyo Co. Ltd). The repetition rate and pulse width were fixed at 30kHz and 2.0 us, respectively. The plasma discharge was carried out for a fixed reaction time of 60 min. In case of Ag nanodendrites, the electric field of 32kVcm-1 in a 200-ml AgNO3 aqueous solution was applied and other conditions were identical to the plasma discharge in water in terms of electrode configuration, repetition rate and discharge time. Using SEM and STEM, morphology of Ag nanowires and dendrites were investigated. With 3.6 kV/cm, Ag nanowire was obtained, while Ag dendrite was constructed with 32 kV/cm. The average diameter and legth of Ag nanowireses were 50 nm and 3.5 um, and thoes values of Ag dendrites were 40 nm and 3.0 um. As a results of XPS analysis, the surface defects in the Ag nanowires facilitated O2 incorporation into the surface region via the interaction between the oxygen and the electron cloud of the adjacent Ag atoms. The catalytic activity of Ag for oxygen reduction reaction(ORR) showed that the catalytic ORR activity of Ag nanowires are much better than Ag nanodendrites, and electron transfer number of Ag nanowires is similar to that of Pt (${\approx}4$).

  • PDF

Hybrid MBE Growth of Crack-Free GaN Layers on Si (110) Substrates

  • 박철현;오재응;노영균;이상태;김문덕
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.183-184
    • /
    • 2013
  • Two main MBE growth techniques have been used: plasma-assisted MBE (PA-MBE), which utilizes a rf plasma to supply active nitrogen, and ammonia MBE, in which nitrogen is supplied by pyrolysis of NH3 on the sample surface during growth. PA-MBE is typically performed under metal-rich growth conditions, which results in the formation of gallium droplets on the sample surface and a narrow range of conditions for optimal growth. In contrast, high-quality GaN films can be grown by ammonia MBE under an excess nitrogen flux, which in principle should result in improved device uniformity due to the elimination of droplets and wider range of stable growth conditions. A drawback of ammonia MBE, on the other hand, is a serious memory effect of NH3 condensed on the cryo-panels and the vicinity of heaters, which ruins the control of critical growth stages, i.e. the native oxide desorption and the surface reconstruction, and the accurate control of V/III ratio, especially in the initial stage of seed layer growth. In this paper, we demonstrate that the reliable and reproducible growth of GaN on Si (110) substrates is successfully achieved by combining two MBE growth technologies using rf plasma and ammonia and setting a proper growth protocol. Samples were grown in a MBE system equipped with both a nitrogen rf plasma source (SVT) and an ammonia source. The ammonia gas purity was >99.9999% and further purified by using a getter filter. The custom-made injector designed to focus the ammonia flux onto the substrate was used for the gas delivery, while aluminum and gallium were provided via conventional effusion cells. The growth sequence to minimize the residual ammonia and subsequent memory effects is the following: (1) Native oxides are desorbed at $750^{\circ}C$ (Fig. (a) for [$1^-10$] and [001] azimuth) (2) 40 nm thick AlN is first grown using nitrogen rf plasma source at $900^{\circ}C$ nder the optimized condition to maintain the layer by layer growth of AlN buffer layer and slightly Al-rich condition. (Fig. (b)) (3) After switching to ammonia source, GaN growth is initiated with different V/III ratio and temperature conditions. A streaky RHEED pattern with an appearance of a weak ($2{\times}2$) reconstruction characteristic of Ga-polarity is observed all along the growth of subsequent GaN layer under optimized conditions. (Fig. (c)) The structural properties as well as dislocation densities as a function of growth conditions have been investigated using symmetrical and asymmetrical x-ray rocking curves. The electrical characteristics as a function of buffer and GaN layer growth conditions as well as the growth sequence will be also discussed. Figure: (a) RHEED pattern after oxide desorption (b) after 40 nm thick AlN growth using nitrogen rf plasma source and (c) after 600 nm thick GaN growth using ammonia source for (upper) [110] and (lower) [001] azimuth.

  • PDF

한강의 오염도 (Han River Pollution Studies)

  • 최상
    • 한국해양학회지
    • /
    • 제7권1호
    • /
    • pp.24-45
    • /
    • 1972
  • The Han River is an important water source in Seoul and neighbouring districts, for public and industrial supply, and for agriculture and fishery. Nowadays, more than six million inhabitants are supplied withe water from this river. The total length of the river is 470km, and has 17 10$\^$9/㎥ an average annual flow. The hydrographic characteristics at Seoul are 653㎥/sec in an average flow, 4,608㎥/sec in the maximum average flow, and 201㎥/sec in the minimum average flow. These are influenced in some degree by snowmelt in early spring, and greatly by the flood during summer. For the pollution problems, the periods of low flow are critical ones. As a rule they occur around the months November through June. Nowadays, most of the sewage from towns and industries is discharged untreated. Apart from domestic and industrial sewages, there are some discharges of mineral matter by mines in the upriver region. In general, water quality of the Han River is kept very clean and healthy until Kwangnaru of the upper region of Seoul. A large pollution, however, is received in the downstream by the domestic and industrial sewages of Seoul. It can be seen that dissolved oxygen, COD and BOD$\sub$5/ diminish markedly, and the intensity of almost every water parameter of the river continues to increase. Comparison of the figures for 1971 derived from a sampling point 40km downstream of Kwangnaru leads to the conclusion that hardness, Ca and Mg were no changed; alkalinity, Si and soluble- Fe were slightly increased; CO$\sub$2/, acidity, Cl, NO$\sub$2/-N, Cu, Zn and Al were increased in 2 and 3 times; total residue, total ignitious residue, COD, BOD$\sub$5/, NH$\sub$4/-N, PO$\sub$4/-P, Mn, Pb and total-Fe were increased in 4 to 7 times; and SO$\sub$4/, particulate-Fe and Cd were increased in 10 to 11 times. On the other hand, coliforms were increased in 650 times; fecal coliforms in 365 times; enterococci and total plate counts in 30 times, respectively. In view points of water quality standards, the down Han River water is now leveling out in Cd, coliforms and fecal coliforms for the agricultural use; in dissolved oxygen and some trace elements (Cu, Zn, Pb and Cd) for the fishery use; in ammonia, COD, BOD$\sub$5/, and Cd for the drinking use.

  • PDF

Effect of micro-environment in ridge and southern slope on soil respiration in Quercus mongolica forest

  • Lee, Jae-Seok
    • Journal of Ecology and Environment
    • /
    • 제42권4호
    • /
    • pp.210-218
    • /
    • 2018
  • Background: Soil respiration (Rs) is a major factor of the absorption and accumulation of carbon through photosynthesis in the ecosystem carbon cycle. This directly affects the amount of net ecosystem productivity, which affects the stability and sustainability of the ecosystem. Understanding the characteristics of Rs is indispensable to scientifically understand the carbon cycle of ecosystems. It is very important to study Rs characteristics through analysis of environmental factors closely related to Rs. Rs is affected by various environmental factors, such as temperature, precipitation, soil moisture, litter supply, organic matter content, dominant plant species, and soil disturbance. This study was conducted to analyze the effects of micro-topographical differences on Rs in forest vegetation by measuring the Rs on the ridge and southern slope sites of the broadly established Quercus mongolica forest in the central Korean area. Method: Rs, Ts, and soil moisture data were collected at the southern slope and ridge of the Q. mongolica forest in the Mt. Jeombong area in order to investigate the effects of topographical differences on Rs. Rs was collected by the closed chamber method, and data collection was performed from May 2011 to October 2013, except Winter seasons from November to April or May. For collecting the raw data of Rs in the field, acrylic collars were placed at the ridge and southern slope of the forest. The accumulated surface litter and the soil organic matter content (SOMC) were measured to a 5 cm depth. Based on these data, the Rs characteristics of the slope and ridge were analyzed. Results: Rs showed a distinct seasonal variation pattern in both the ridge and southern slope sites. In addition, Rs showed a distinct seasonal variation with high and low Ts changes. The average Rs measurements for the two sites, except for the Winter periods that were not measured, were $550.1\;mg\;CO_2m^{-2}h^{-1}$ at the ridge site and $289.4\;mg\;CO_2m^{-2}h^{-1}$ at the southern slope, a difference of 52.6%. There was no significant difference in the Rs difference between slopes except for the first half of 2013, and both sites showed a tendency to increase exponentially as Ts increased. In addition, although the correlation is low, the difference in Rs between sites tended to increase as Ts increased. SMC showed a large fluctuation at the southern slope site relative to the ridge site, as while it was very low in 2013, it was high in 2011 and 2012. The accumulated litter of the soil surface and the SOMC at the depth range of 0~5 cm were $874g\;m^{-2}$ and 23.3% at the ridge site, and $396g\;m^{-2}$ and 19.9% at the southern slope site. Conclusions: In this study, Rs was measured for the ridge and southern slope sites, which have two different results where the surface litter layer is disturbed by strong winds. The southern slope site shows that the litter layer formed in autumn due to strong winds almost disappeared, and while in the ridge site, it became thick due to the transfer of litter from the southern slope site. The mean Rs was about two times higher in the ridge site compared to that in the southern slope site. The Rs difference seems to be due to the difference in the amount of litter accumulated on the soil surface. As a result, the litter layer supplied to the soil surface is disturbed due to the micro-topographical difference, as the slope and the change of the community structure due to the plant season cause heterogeneity of the litter layer development, which in turn affects SMC and Rs. Therefore, it is necessary to introduce and understand these micro-topographical features and mechanisms when quantifying and analyzing the Rs of an ecosystem.

Feeder Free 상태에서 배양된 인간 배아 줄기세포를 이용한 중간엽 줄기세포 분화 및 단백체학을 이용한 골수 유래 중간엽 줄기세포와의 비교 (Derivation of MSC Like-Cell Population from Feeder Free Cultured hESC and Their Proteomic Analysis for Comparison Study with BM-MSC)

  • 박순정;전영주;김주미;선정민;채정일;정형민
    • Reproductive and Developmental Biology
    • /
    • 제34권3호
    • /
    • pp.143-151
    • /
    • 2010
  • Pluripotency of human embryonic stem cell (hESC) is one of the most valuable ability of hESCs for applying cell therapy field, but also showing side effect, for example teratoma formation. When transplant multipotent stem cell, such as mesnchymal stem cell (MSC) which retains similar differentiation ability, they do not form teratoma in vivo, but there exist limitation of cellular source supply. Accordingly, differentiation of hESC into MSC will be promising cellular source with strong points of both hESC and MSC line. In this study, we described the derivation of MSC like cell population from feeder free cultured hESC (hESC-MSC) using direct differentiation system. Cells population, hESC-MSC and bone marrow derived MSC (BM-MSC) retained similar characteristics in vitro, such as morphology, MSC specific marker expression and differentiation capacity. At the point of differentiation of both cell populations, differentiation rate was slower in hESC-MSC than BM-MSC. As these reason, to verify differentially expressed molecular condition of both cell population which bring out different differentiation rate, we compare the molecular condition of hESC-MSC and BM-MSC using 2-D proteomic analysis tool. In the proteomic analysis, we identified 49 differentially expressed proteins in hESC-MSC and BM-MSC, and they involved in different biological process such as positive regulation of molecular function, biological process, cellular metabolic process, nitrogen compound metabolic process, macromolecule metabolic process, metabolic process, molecular function, and positive regulation of molecular function and regulation of ubiquitin protein ligase activity during mitotic cell cycle, cellular response to stress, and RNA localization. As the related function of differentially expressed proteins, we sought to these proteins were key regulators which contribute to their differentiation rate, developmental process and cell proliferation. Our results suggest that the expressions of these proteins between the hESC-MSC and BM-MSC, could give to us further evidence for hESC differentiation into the mesenchymal stem cell is associated with a differentiation factor. As the initial step to understand fundamental difference of hESC-MSC and BM-MSC, we sought to investigate different protein expression profile. And the grafting of hESC differentiation into MSC and their comparative proteomic analysis will be positively contribute to cell therapy without cellular source limitation, also with exact background of their molecular condition.