• Title/Summary/Keyword: $CO_2$ standard gas

Search Result 182, Processing Time 0.027 seconds

The 'Consequence Analysis' of Variables Affecting the Extent of Damage Caused by Butane Vapor Cloud Explosions (부탄가스 증기운폭발의 피해범위에 영향을 미치는 변수에 관한 고찰)

  • Char Soon-Chul;Choo Kwang-Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.4 s.16
    • /
    • pp.1-7
    • /
    • 2001
  • This paper presents a 'consequence analysis' for vapor cloud explosions caused by heavy gas leakages from commercially used storage tanks at petrochemical plants. Particularly, this paper emphasizes on evaluating the results of various vapor cloud explosion accidents from Butane storage tanks. Also this paper analyses the impact of variables on the accidents in order to acquire the optimum conditions for variables. $SuperChems^{TM}$ Professional Edition was applied to analyse the impact (If atmospheric and other variables in the situation where vapor cloud continuously disperses from the ground level. Under the assumption that practical operating conditions are selected as a standard condition, and Butane leaks from the storage tank for 15 minutes, the results show that the maximum distance of LFL (Lower Flammable Limit) was 52 meters and overpressure by the vapor cloud explosion was 1 psi at 128.2 meters. It is observed that the impact of the variables on accidental Butane storage tank leakage mainly varied upon atmospheric stability, wind velocity, pipe line size, visible length, etc., and changes in the simulation result occurred as the variables varied. The maximum distance of the LFL (Lower Flammable Limit) increased as the visible length became shorter, the size of the leak became larger, the wind velocity was decreased, and the climatic conditions became more stable. Thus, by analysing the variables that influence the simulation results of explosions of Butane storage tanks containing heavy gases, I am presenting the most appropriate method for 'consequence analysis' and the selection of standards for suitable values of variables, to obtain the most optimal conditions for the best results.

  • PDF

Development of an Economic Material Selection Model for G-SEED Certification (녹색건축(G-SEED) 인증을 위한 경제적 자재선정 모델 개발)

  • Jeon, Byung-Ju;Kim, Byung-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.613-622
    • /
    • 2020
  • The South Korean government plans for a 37 % reduction in CO2 emissions against business as usual by 2030. Subsequently, the Ministry of Land, Infrastructure and Transport declared a 26.9 % reduction target in greenhouse gas emissions from buildings by 2020 and established the Green Standard for Energy and Environmental Design (G-SEED) to help improve the environmental performance of buildings. Construction companies often work with consulting firms to prepare for G-SEED certification. In the process, owing to inefficient data sharing and work connections, it is difficult to achieve economic efficiency and obtain certification. The objective of this study was to develop an economic model to assist contractors in achieving the required G-SEED scores for materials and resources. To do this, we automated the process for material comparison and selection on the basis of an analysis of actual consulting data, and developed a model that selects material alternatives that can meet the required scores at a minimum cost. Information on materials is input by applying a genetic algorithm to the optimization of alternatives. When the model was applied to actual data, the construction cost could be lowered by 79.3 % compared with existing methods. The economical material selection model is expected to not only reduce construction costs for owners desiring G-SEED certification but also shorten the project design time.

An analytical study on the fire characteristics of the small tunnel with large smoke exhaust port (대배기구 배연방식을 적용한 소형차 전용 터널의 화재특성에 관한 해석적 연구)

  • Yoo, Ji-Oh;Kim, Jin-Su;Rhee, Kwan-Seok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.3
    • /
    • pp.375-388
    • /
    • 2017
  • In order to solve the traffic congest and environmental issues, small-cross section tunnel for small car only is increasing, but there is not standard for installation of disaster prevention facility. In this study, in order to investigate the behavioral characteristics of thermal environment and smoke in a small cross section tunnels with a large port exhaust ventilation system, the A86, the U-Smartway and the Seobu moterawy tunnel, Temperature and CO concentration in case of fire according to cross sectional area, heat release rate and exhaust air flow rate were analyzed by numerical analysis and the results were as follows. As the cross-sectional area of the tunnel decreases, the temperature of the fire zone increases and the rate of temperature rise is not significantly affected by heat release rate. However, there is a difference depending on the change of the exhaust air flow rate. In the case of applying the exhaust air flow rate $Q_3+2.5Ar$ of the large port exhaust ventilation system, the temperature of the fire zone was 7.1 times for A86 ($Ar=25.3m^2$) and 5.4 time for U-smartway ($Ar=37.32m^2$) by Seobu moterway tunnel ($Ar=46.67m^2$). The CO concentration of fire zone also showed the same tendency. The A86 tunnels were 10.7 times and the U-Smartways were 9.5 times more than the Seobu moterway. Therefore, in the case of a small section tunnel, the thermal environment and noxious gas concentration due to the reduction of the cross-sectional area are expected to increase significantly more than the cross-sectional reduction rate.

Experimental Study on Reduction of Particulate Matter and Sulfur Dioxide Using Wet Electrostatic Precipitator (습식전기집진기를 활용한 입자상 물질 및 황산화물 저감 성능에 관한 실험적 연구)

  • Kim, Jong-Lib;Oh, Won-Chul;Lee, Won-Ju;Choi, Jae-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.6
    • /
    • pp.898-904
    • /
    • 2021
  • This experimental study aims to investigate the use of a wet electrostatic precipitator as a post-treatment device to satisfy the strict emission regulations for sulfur oxides and particulate matter (PM). The inlet/outlet of a wet electrostatic precipitator was installed in a funnel using a marine four-stroke diesel engine (STX-MAN B&W) consuming marine heavy fuel oil (HFO) with a sulfur content of about 2.1%. Measurements were then obtained at the outlet of the wet electrostatic precipitator; an optical measuring instrument (OPA-102), and the weight concentration measurement method (Method 5 Isokinetic Train) were used for the PM measurements and the Fourier transform infrared (FT-IR; DX-4000) approach was used for the sulfur oxide measurements. The experimenst were conducted by varying the engine load from 50%, to 75% and 100%; it was noted that the PM reduction efficiency was a high at about 94 to 98% under all load conditions. Additionally, during the process of lowering the exhaust gas temperature in the quenching zone of the wet electrostatic precipitator, the sulfur dioxide (SO2) values reduced because of the cleaning water, and the reduction rate was confirmed to be 55% to 81% depending on the engine load.

A Research on PV-connected ESS dissemination strategy considering the effects of GHG reduction (온실가스감축효과를 고려한 태양광 연계형 에너지저장장치(ESS) 보급전략에 대한 연구)

  • Lee, Wongoo;KIM, Kang-Won;KIM, Balho H.
    • Journal of Energy Engineering
    • /
    • v.25 no.2
    • /
    • pp.94-100
    • /
    • 2016
  • ESS(Energy Storage System) is an important source that keeps power supply stable and utilizes electricity efficiently. For example, ESS contributes to resolve power supply imbalance, stabilize new renewable energy output and regulate frequency. ESS is predicted to be expanded to 55.9GWh of installed capacity by 2023, which is 30 times more than that of 2014. To raise competitiveness of domestic ESS industry in this increasing world market, we have disseminated load-shift ESS for continuous power supply imbalance with FR ESS, and also necessity to secure domestic track record is required. However in case of FR ESS, utility of installing thermal power plant is generally generated within 5% range of rated capacity, so that scalability of domestic market is low without dramatic increase of thermal power plant. Necessity of load-shift ESS dissemination is also decreasing effected by surplus backup power securement policy, raising demand for new dissemination model. New dissemination model is promising for $CO_2$ reduction effect in spite of intermittent output. By stabilizing new renewable energy output in connection with new renewable energy, and regulating system input timing of new renewable energy generation rate, it is prospected model for 'post-2020' regime and energy industry. This research presents a policy alternatives of REC multiplier calculation method to induce investment after outlining PV-connected ESS charge/discharge mode to reduce GHG emission, This alternative is projected to utilize GHG emission reduction methodology for 'Post-2020' regime, big issue of new energy policy.

Relationship of Compliance and Oxygen Transport in Experimental Acute Respiratory Failure during Positive End-Expiratory Pressure Ventilation (실험적 급성호흡부전에서 호기말양압에 의한 폐유순도와 산소운반의 변화 및 상관관계 - 호흡부전의 기전에 따른 차이 -)

  • Lee, Sang-Do;Yoon, Se-Jin;Lee, Bok-Hee;Han, Sung-Koo;Shim, Young-Soo;Kim, Keun-Youl;Han, Yong-Chol
    • Tuberculosis and Respiratory Diseases
    • /
    • v.40 no.1
    • /
    • pp.6-15
    • /
    • 1993
  • Background: Positive end, expiratory pressure (PEEP) has become one of the standard therapies for adult respiratory distress syndrome (ARDS). Total static compliance has been proposed as a guide to determine the size of PEEP ('best PEEP') which is of unproven clinical benefit and remains controversial. Besides increasing functional residual capacity and thus improving oxygenation, PEEP stimulate prostacyclin secretion and was proposed for the treatment of acute pulmonary embolism. But little is known about the effect of PEEP on hemodynamic and gas exchange disturbances in acute pulmonary embolism. Methods: To study the validity of total static compliance as a predictor of 'best PEEP' in ARDS and acute pulmonary embolism, experimental ARDS was induced in mongrel dog with oleic acid and acute pulmonary embolism with autologous blood clot. Then hemodynamic and gas exchange parameters were measured with serial increment of PEEP. Results:In ARDS group, total static compliance and oxygen transport were maximal at 5 cm$H_2O$, and decreased thereafter (p<0.05). With increment of PEEP, arterial oxygen tension ($PaO_2$) and arterial carbon dioxide tension ($PaCO_2$) increased and cardiac output and physiological shunt decreased. In pulmonary embolism group, total static compliance, oxygen transport, physiological shunt and cardiac output decreased and $PaO_2$ and $PaCO_2$ increased with increment of PEEP (p<0.05). Comparing the change induced by increment of PEEP by 1 cm$H_2O$ in ARDS group with that in pulmonary embolism group, there was no significant difference between two groups except cardiac output which decreased more in pulmonary embolism group (p<0.05). In ARDS group, oxygen transport and total static compliance increased after PEEP application, and total static compliance was maximal at the PEEP level where oxygen transport was maximal. However in pulmonary embolism group, oxygen transport and total static compliance decreased after application of PEEP. There was significant correlation between change of total static compliance and change of oxygen transport in both groups. Conclusion: In both ARDS and acute pulmonary embolism, it can be concluded that total static compliance is useful as a predictor of 'best PEEP'.

  • PDF

Low-temperature Oxidation of Odor Compounds over La-based Perovskite Catalyst (란탄 기반 페롭스카이트 촉매를 이용한 악취 유발 물질의 저온 산화 반응)

  • Bang, Yong-Ju;Seo, Jeong-Gil;Lee, Gi-Chun;Park, Chan-Jung;Kim, Hyung-Tae;Song, In-Kyu
    • Korean Chemical Engineering Research
    • /
    • v.49 no.2
    • /
    • pp.168-174
    • /
    • 2011
  • Various La-based perovskite catalysts were prepared by a Pechini method, and they were applied to the low-temperature oxidation of odor compounds exhausted from waste food treatment process for effective deodorization. Quantitative and qualitative analyses of exhausted gas were conducted to measure the amount of major odor compounds with respect to operation time. A standard odor sample composed of major odor compounds was then prepared for use as a feed for oxidation reaction system. Various transition metal(M)-substituted La-based perovskite catalysts ($LaMO_{3}$: M=Cr, Mn, Fe, Co, and Ni) were prepared and applied to the oxidation of odor compounds in order to investigate the $LaNiO_3$ catalyst showed the best catalytic performance. Pt-substituted perovskite catalysts ($LaNi_{1-x}Pt_{x}O_{3}$: x=0, 0.03, 0.1, and 0.3) were then prepared for enhancing the catalytic performance. It was found that $LaNi_{0.9}Pt_{0.1}O_{3}$ catalyst served as the most efficient catalyst. Supported perovskite catalysts ($XLaNi_{0.9}Pt_{0.1}O_{3}/Al_{2}O_{3}$: X=perovskite content(wt%), 0, 10, 20, 30, 40, 50, and 100) were finally applied for the purpose of maximizing the catalytic performance of perovskite catalyst in the low-temperature oxidation reaction. Catalytic performance of $XLaNi_{0.9}Pt_{0.1}O_{3}/Al_{2}O_{3}$ catalysts showed a volcano-shaped curve with respect to perovskite content. Among the catalysts tested, $20LaNi_{0.9}Pt_{0.1}O_{3}$/$Al_{2}O_{3}$ catalyst exhibited the highest conversion of odor compounds of 88.7% at $180^{\circ}C$.

Development of Analytical Method for Propylene Glycol in Foods (식품 중 프로필렌글리콜의 분석법 개발)

  • Kim, Hee-Yun;Hong, Ki-Hyoung;Choi, Jang-Duck;Park, Sung-Kwan;Jung, Si-Sub;Choi, Woo-Jeong;Lee, Shin-Ho;Moon, Dong-Chul
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.889-892
    • /
    • 2005
  • Standardized method based on extraction, filtration, and gas chromatography (GC) was developed far propylene glycol analysis to set hygienic norm of safety measure for foods under governmental control. Various columns were tested fur propylene glycol analysis by GC with flame ionization detector. Known amount of propylene glycol was spiked into wheat flour dough and analyzed by developed method. Results showed 101.60% recovery rate for propylene glycol with HP-5 column. Reproducibility test of standards recorded 0.30 for standard variation and 0,42% for relative variation. Using analytical method established, contents of propylene glycol in more than hundred different foods were monitored. Propylene glycol was detected in most foods, indicating propylene glycol is not only commonly added during food preparation, but also is contained naturally in food.

A Study on the Effect Analysis and Improvement of Cardiopulmonary Resuscitation on Life-rafts (구명뗏목에서의 비상대응 심폐소생술의 효과 분석 및 개선에 관한 연구)

  • Lee, Chang-Woo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.4
    • /
    • pp.433-440
    • /
    • 2019
  • Offshore working environments such as ships, offshore oil and gas plants, and offshore wind turbines are isolated and directly exposed to rough seas, which pose high risks of safety accidents. Therefore, all workers in offshore plants should be able to cope with emergency situations and must be qualified according to relevant laws and regulations such as the International Convention on Standards of Training, Certification and Watchkeeping for Seafarers (STCW Convention) and Offshore Petroleum Industry Training Organization (OPITO) standards. In particular, marine workers should be able to perform cardiopulmonary resuscitation (CPR) in isolated locations or enclosed and confined spaces such as those in life-boats, life-rafts, rescue-boats, etc. Because the floor material is made of rubber, it may be difficult to perform chest compressions in life-rafts used to escape from emergency situations in ships or offshore plants. Chest compressions performed on life-rafts may reduce the accuracy of CPR and increase fatigue for those providing aid. To measure the accuracy and fatigue of those performing CPR in life-rafts, 15 experimenters with more than five years of experience as first aid instructors were exposed to different CPR environments in a marine safety training center equipped with an artificial wave generator. The results showed that the accuracy of CPR in the classroom was 99.6 %, but that in various life-raft environments was only 84 %. T-verification of the two sites confirmed the reduced accuracy of CPR performed on life-rafts. CPR on life-rafts should be performed in groups of two and with the use of automated chest compression devices.

Comparative Analysis of arterial Gases and Acid-base status in Patients with Congenital and Acquired Heart Disease at Preoperative Period, During Extracorporeal Circulation. and Postoperative Period (선천성 및 후천성 심질환 환자에서 체외순환 전, 중, 후의 동맥혈 가스의 비교 분석)

  • 이동석;이봉근;김송명
    • Journal of Chest Surgery
    • /
    • v.34 no.11
    • /
    • pp.831-842
    • /
    • 2001
  • Background: Patients with cardiac diseases who have structural defects in their heart bring about metabolic insult such as preoperative acid-base imbalance. Cardiac operation requires many nonphysiologic procedures such as extracorporeal circulation, hypothermia, and hemodilution. We studied the acid-base status of surgical heart diseases pre-operatively, during extracorporeal circulation, and post-operatively and researched the treatment indications of acid-base disturbances. Material and Method: From January 1997 to May 1999, fifty two cases of open heart surgery were carried out under extracorporeal circulation, which divided into a set of pediatric and adult groups, congenital and acquired groups, non-cyanotic and cyanotic groups, The $\alpha$ -stat arterial blood gas analysis was done in each group during the preoperative period, during the operation with extracorporeal circulation, and during the postoperative period. Result: Before surgery, all patients present metabolic acidosis, PaO2 was low in adult group and acquired group and compensatory respiratory alkalosis was noted in cyanotic group. During extracorporeal circulation, adult group revealed alkalosis and normal in acquired group. Pediatric group presents low Pa$CO_2$, metabolic acidosis and respiratory alkalosis. Congenital group and non-cyanotic group showed non-compensatory alkalosis trend and non-compensatory respiratory acidosis were observed in cyanotic group during extracorporeal circulation. Postoperative acid-base status of adult group was recovered to normal and the standard bicarbonate was increased in the acquired group. All of the pediatric, congenital non-cyanotic, and cyanotic groups revealed the lack of buffer base.

  • PDF