• 제목/요약/키워드: $CO_2$ source

검색결과 1,648건 처리시간 0.034초

생물학적 $CO_2$ 고정화를 위한 스케일-업된 광생물반응기에서 Chlorella sp. HA-1의 성장에 미치는 빛의 영향 (Effect of Light on Growth of Chlorella sp. HA-1 in Large-scale Photobioreactors for Biological $CO_2$ Fixation)

  • 이재영;권태순;김호정;양지원
    • KSBB Journal
    • /
    • 제18권4호
    • /
    • pp.340-345
    • /
    • 2003
  • 본 연구에서는 대량으로 배출되는 이산화탄소를 고정화하기 위해서 lab 규모의 3 L 광생물 반응기(1)를 bench 규모의 40 L와 pilot 규모의 188 L로 스케일-업 했을 때 이산화탄소의 고정화 특성을 살펴보았다. 균체성장속도 즉, $CO_2$ 고정화 속도는 광생물 반응기가 스케일-업 됨에 따라 감소하였으며, 단위면적당 $CO_2$ 고정화 양은 40 L 광생물 반응기에서 530 g $CO_2$/$m^2$-day으로 가장 높았다. 반면, 총 $CO_2$ 고정화양은 반응기의 용량이 커짐에 따라 증가하였으며, 188 L 광생물 반응기에서 28.05 g $CO_2$/day를 얻었다. 광생물 반응기의 운전에 있어서 $CO_2$ 고정화속도의 향상은 단위면적당 $CO_2$ 고정화 양 및 총 $CO_2$ 고정화양을 증가시킨다. $CO_2$ 고정화속도에 영향을 미치는 운전인자 중에 가장 중요한 것은 광원으로 반응기의 스케일-업시 광원의 개수 및 배열을 조절함으로써 용량이 커짐에 따라 저감되는 $CO_2$ 고정화속도를 증가시킬 수 있었다. 또한 향후 스케일-업된 광생물 반응기에서의 물질전달 현상에 관한 연구를 동반함으로써 보다 높은 $CO_2$ 고정화속도를 얻을 수 있을 것으로 판단된다.

적외선원 IRAS 07280-1829와 이와 관련된 분자운의 CO분자선 관측연구 (CO Observations Toward IRAS 07280-1829 and Its Related Clouds)

  • 이창원
    • 한국지구과학회지
    • /
    • 제32권4호
    • /
    • pp.402-410
    • /
    • 2011
  • 본 논문에서는 IRAS 07280-1829 적외선원과 이를 둘러싸고 있는 분자운에 대해 수행된 $^{12}CO$$^{13}CO$ 1-0 분자선 관측결과와 기존의 적외선 자료를 이용하여 이 적외선원의 생성환경에 관해 연구하였다. 관측자료로부터 얻어진 적외선원의 파장별 에너지분포의 기울기(${\alpha}$=1.16)와 복사온도(145 K), 그리고 광도(${\sim}2.9{\times}10^4L_{\odot}$)는 이 적외선 천체가 CLASS I형의 중량급원시성임을 의미한다. 이 적외선원방향에서 관측된 두 CO 분자선에서 보이는 넓은 속도 성분은 분자분출류의 존재를 암시한다. 적외선원을 감싸고 있으리라 짐작되는 분자운A에서 측정된 여기온도는 9-22 K, 질량은 약 ~180 $M_{\odot}$인 것으로 보아 이 분자운이 전형적인 적외선 암흑분자운(Infrared-dark clouds)의 물리적 특성을 가짐을 보았다. 이 분자운의 질량은 비리알 질량보다 10배 이상 작은 값으로 계산되었는데 이것은 여기에 어린 원시성이 이미 생성되고 있다는 관측사실에 모순된다. 이는 아마도 분자운A가 교란운동(turbulence) 혹은 강한 자기장에 의해 지배되는 환경 가운데에 중량급원시성 IRAS 07280-1829을 생성하고 있음을 의미하는 것 일수도 있는 것으로 해석하였다.

거주지역 실내공기 특성 및 이산화질소 노출에 관한 연구 (Residence s Exposure to Nitrogen Dioxide and Indoor Air Characteristics)

  • 양원호;배현주;정문호
    • 한국환경보건학회지
    • /
    • 제28권2호
    • /
    • pp.183-192
    • /
    • 2002
  • Indoor air quality is affected by source strength of pollutants, ventilation rate, decay rate, outdoor level and so on. Although technologies exist to measure these factors directly, direct measurements of all factors are impractical in most field studies. The purpose of this study was to develop an alternative methods to estimate these factors by multiple measurements. Daily indoor and outdoor NO$_2$concentrations for 21 days in 20 houses in summer and winter, Seoul. Using a mass balance model and linear regression analysis, penetration factor (ventilation divided by sum of air exchange rate and deposition constant) and source strength factor(emission rate divided by sum of air exchange rate and deposition constant) were calculated. Subsequently, the ventilation and source strength were estimated. During sampling period, geometric mean of natural ventilation was estimated to be 1.10$\pm$1.53 ACH, assuming a residential NO$_2$decay rate of 0.8 hr$^{-1}$ in summer. In winter, natural ventilation was 0.75$\pm$1.31 ACH. And mean source strengths in summer and winter were 14.8ppb/hr and 22.4ppb/hr, respectively. Although the method showed similar finding previous studies, the study did not measure ACH or the source strength of the house directly. As validation of natural ventilations, infiltrations were measured with $CO_2$tracer gas in 18 houses. Relationship between ventilation and infiltration was statistically correlated (Pearson r=0.63, p=0.02).

공기 및 지열 이용 Dual-Source 히트펌프 시스템의 성능실험 및 경제성 분석 (The Performance Test and the Feasibility Study for a Dual-Source Heat Pump System Using the Air and Ground Heat Source)

  • 남유진;채호병
    • 설비공학논문집
    • /
    • 제26권5호
    • /
    • pp.212-217
    • /
    • 2014
  • Recently, the use of renewable energy has been increased due to growing concern on the energy-saving at buildings and the reduction of $CO_2$ emission. In the field of architecture, to reduce the energy consumption of heating, cooling and hot water supply, heat pump systems with renewable energy has been developed and used in various applications. However, there have been many of researches on the large-scale commercial heat pump systems, but the research and the field application of a compact heat pump system is rare. Therefore, in order to develop the compact heat pump for the small-scale residential building, this study conducted the performance test and feasibility study for a hybrid heat pump using the heat source of air, solar and ground. In the results of experiments through a trial product, the average COP of cooling mode with ground heat source was 4.75, and it of heating mode was 4.03. Furthermore, the average COP of cooling mode with air heat source was 2.60, and it of heating mode was 2.92. Finally, payback period of the system was calculated as 9.2 years.

Analysis of Novel Helmholtz-inductively Coupled Plasma Source and Its Application for Nano-Scale MOSFETs

  • Park, Kun-Joo;Kim, Kee-Hyun;Lee, Weon-Mook;Chae, Hee-Yeop;Han, In-Shik;Lee, Hi-Deok
    • Transactions on Electrical and Electronic Materials
    • /
    • 제10권2호
    • /
    • pp.35-39
    • /
    • 2009
  • A novel Helmholtz coil inductively coupled plasma(H-ICP) etcher is proposed and characterized for deep nano-scale CMOS technology. Various hardware tests are performed while varying key parameters such as distance between the top and bottom coils, the distance between the chamber ceiling and the wafer, and the chamber height in order to determine the optimal design of the chamber and optimal process conditions. The uniformity was significantly improved by applying the optimum conditions. The plasma density obtained with the H-ICP source was about $5{\times}10^{11}/cm^3$, and the electron temperature was about 2-3 eV. The etching selectivity for the poly-silicon gate versus the ultra-thin gate oxide was 482:1 at 10 sccm of $HeO_2$. The proposed H-ICP was successfully applied to form multiple 60-nm poly-silicon gate layers.

Electrical and optical properties of Li & P co-doped ZnO thin film by PLD

  • Choi, Im-Sic;Kim, Don-Hyeong;Heo, Young-Woo;Lee, Joon-Hyung;Kim, Jeong-Joo
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.209-209
    • /
    • 2009
  • Fabrication of p-type ZnO has already proven difficult and usually inconsistent despite numerous worldwide efforts. Many research groups studied electrical and optical properties P, Li, As, N single doped ZnO thin film. In P-doped ZnO thin film, the reproducibility of p-type conduction with $P_2O_5$ as a dopant source was shown to be relatively poor. In this study, we made P single doped and Li & P co-doped ZnO target. To investigate electrical and optical properties of P single doped and Li & P co-doped ZnO thin film using $P_2O_5$ and $Li_3PO_4$ dopant source respectively was deposited by PLD. The growth temperature was changed 500, $700^{\circ}C$ and various oxygen partial pressure and post-annealing conditions was changed temperature, different gas ambient($O_2,N_2$). We investigate that how to change electrical and optical properties as function of growth temperature, oxygen partial pressure and post-annealing(RTA).

  • PDF

저탄소 녹색도시 조성을 위한 신도시 하수처리시설의 에너지 자립 효과 분석 (Effect Analysis on Self-supporting Energy of Newtown Sewage Treatment Facility for Low-carbon Green City)

  • 안수정;현경학;김종엽;정연규
    • 상하수도학회지
    • /
    • 제24권6호
    • /
    • pp.683-690
    • /
    • 2010
  • Renewable and unutilized energy (biogas power generation, wind power, solar, small hydro-power, sewage heat source, etc.) seems to be suitable to install for the sewage treatment facilities. There are 357 sewage treatment plants in 2007. 17 plants among these have been operating for self-supporting energy by using solar power, small hydro-power and biogas in 2008. Newly built sewage treatment plant of 96,000 $m^3$/day for a newtown is expected to get up to energy consumption of 10 GWh/yr. If solar energy, small hydro-power and biogas-equipments were applied to the new treatment plant, self-supporting energy of the new sewage treatment plant will get up to 56.1%. As a results, about 2,379ton $CO_2$/yr $CO_2$ emission reduction can be expected by using renewable energy. These efforts for self-supporting energy will lead sewage treatment plant to new energy recycle center.

Effect of O2, CO, and NO on the Surface Segregation in a Rh50Pd50 Bulk Crystal and a comparison to Rh50Pd50 Nanoparticles

  • Park, Mi-Ta;Grass, Michael E.;Aksoy, Funda;Zhang, Yawen;Liu, Zhi;Mun, Bong-Jin S.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.84-84
    • /
    • 2010
  • We present an in-situ study of the interaction of a bimetallic Rh50Pd50 bulk crystal with O2, CO, and NO using ambient pressure x-ray photoelectron spectroscopy and compare it to results for 10 nm nanoparticles with the same overall composition. The surface of the bulk crystal has less Rh present under both oxidizing and reducing conditions than the nanoparticles under identical conditions. Segregation and oxidation/reduction proceeds quicker and at lower temperature for nanoparticles than for the bulk crystal. The near surface of the Rh50Pd50 bulk crystal after high temperature vacuum annealing is ca. 9% Rh measured by XPS. Heating in 0.1 Torr O2 to $350^{\circ}C$ increases the Rh surface composition to ca. 40%. The surface can then be reduced by heating in H2 at $150^{\circ}C$, leading to a reduced surface of 30% Rh. Titration of CO from this Rh-rich surface proceeds at a much lower pressure than on the Rh-deficient starting surface.

  • PDF

Simulation Studies for Noninvasive Optical Measurements of Blood-Scattering Changes in a Skin Model with a Large Blood Vessel

  • Zephaniah, Phillips V;Paik, Seung-ho;Nam, Jungyong;Chang, Ki Young;Jung, Young-Jin;Choi, Youngwoon;Lee, Joonhyung;Kim, Beop Min
    • Current Optics and Photonics
    • /
    • 제3권1호
    • /
    • pp.46-53
    • /
    • 2019
  • Monte Carlo simulations were performed for a three-dimensional tissue model with and without an embedded large vessel, to understand how varying vessel geometry affects surface light distribution. Vessel radius was varied from 1 to 5 mm, and vessel depth from 2 to 10 mm. A larger difference in surface fluence rate was observed when the vessel's radius increased. For vessel depth, the largest difference was seen at a depth of approximately 4 mm, corresponding to human wrist region. When the vessel was placed at depths greater than 8 mm, very little difference was observed. We also tested the feasibility of using two source-detector pairs, comprising two detectors distinctly spaced from a common source, to noninvasively measure blood-scattering changes in a large vessel. High sensitivity to blood-scattering changes was achieved by placing the near detector closer to the source and moving the far detector away from the source. However, at longer distances, increasing noise levels limited the sensitivity of the two-detector approach. Our results indicate that the approach using two source-detector pairs may have potential for quantitative measurement of scattering changes in the blood while targeting large vessels near the human wrist region.

$SnO_2-TiO_2$ 세라믹 복합체의 일산화탄소 감응특성 및 전기적 성질 (CO Gas Sensing Characterstics and Electrical Properties of $SnO_2-TiO_2$ Composite Ceramics)

  • 갬태원;최우성;정승우
    • 한국전기전자재료학회논문지
    • /
    • 제11권6호
    • /
    • pp.453-457
    • /
    • 1998
  • In order to improve CO gas sensitivity, $TiO_2$added $SnO_2$ composite ceramics were prepared. Using XRD and SEM, the phases and micro structures of these ceramics were investigated. The resistances as a function of gas atmosphere were measured by High Voltage Measure/Source Unit. The maximum 100 ppm CO gas sensitivities of $SnO_2-TiO_2$composites were 2.5 times larger than that of pure $SnO_2$ composite and showed the obvious temperature dependence of sensitivities in 500, 100 ppm CO gas atmospheres.

  • PDF