• Title/Summary/Keyword: $CO_2$ solubility

Search Result 361, Processing Time 0.027 seconds

Solubility and Physicochemical Stability of Ondansetron Hydrochloride in Various Vehicles (용제 중 염산온단세트론의 용해성 및 안정성)

  • Gwak, Hye-Sun;Oh, Ik-Sang;Chun, In-Koo
    • Journal of Pharmaceutical Investigation
    • /
    • v.33 no.1
    • /
    • pp.45-49
    • /
    • 2003
  • The solubility and stability of ondansetron hydrochloride (OS) in various vehicles were determined. The effect of cyclodextrins (CD) on the solubility of OS in water was determined by equilibrium solubility method. The solubility of OS at $32^{\circ}C$ increased in the rank order of isopropyl myristate (IPM) < propylene glycol laurate (PGL) ${\ll}$ propylene glycol monolaurate < propylene glycol monocaprylate (PGMC) < poly(ethylene glycol) 400 < diethylene glycol mono ethyl ether (DGME) < ethanol < poly(ethylene glycol) 300 < water (36.1 mg/ml) ${\ll}$ propylene glycol (PG) (283 mg/ml). The addition of PG or DGME to non-aqueous vehicles such as IPM, PGL and PGMC markedly increased the solubility of OS. The addition of CDs in water increased the solubility. Apparent stability constant for the CD complexation with OS was calculated to be $25.5\;M^{-1}$ for $2-hydroxypropyl-{\beta}-CD\;(2HP{\beta}CD)$. Twenty mM ${\beta}-CD$, 69.4 mM sulfobutyl ether ${\beta}-CD$ and 115.4 mM $2HP{\beta}CD$ increased the aqueous solubilty of OS 1.27, 2.18 and 1.85 times, respectively. OS was stable in buffered aqueous solution (pH 5.0). However, OS was relatively unstable in non-aqueous vehicles in the order of PG

Geochemical Modeling on Behaviors of Radionuclides (U, Pu, Pd) in Deep Groundwater Environments of South Korea (한국 심부 지하수 환경에서의 방사성 핵종(우라늄, 플루토늄, 팔라듐)의 지화학적 거동 모델링)

  • Jaehoon Choi;SunJu Park;Hyunsoo Seo;Hyun Tai Ahn;Jeong-Hwan Lee;Junghoon Park;Seong-Taek Yun
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.847-870
    • /
    • 2023
  • The safe disposal of high-level radioactive waste requires accurate predictions of the long-term geochemical behavior of radionuclides. To achieve this, the present study was conducted to model geochemical behaviors of uranium (U), plutonium (Pu), and palladium (Pd) under different hydrogeochemical conditions that represent deep groundwater in Korea. Geochemical modeling was performed for five types of South Korean deep groundwater environment: high-TDS saline groundwater (G1), low-pH CO2-rich groundwater (G2), high-pH alkaline groundwater (G3), sulfate-rich groundwater (G4), and dilute (fresh) groundwater (G5). Under the pH and Eh (redox potential) ranges of 3 to 12 and ±0.2 V, respectively, the solubility and speciation of U, Pu, and Pd in deep groundwater were predicted. The result reveals that U(IV) exhibits high solubility within the neutral to alkaline pH range, even in reducing environment with Eh down to -0.2 V. Such high solubility of U is primarily attributed to the formation of Ca-U-CO3 complexes, which is important in both G2 located along fault zones and G3 occurring in granitic bedrocks. On the other hand, the solubility of Pu is found to be highly dependent on pH, with the lowest solubility in neutral to alkaline conditions. The predominant species are Pu(IV) and Pu(III) and their removal is predicted to occur by sorption. Considering the migration by colloids, however, the role of colloid formation and migration are expected to promote the Pu mobility, especially in deep groundwater of G3 and G5 which have low ionic strengths. Palladium (Pd) exhibits the low solubility due to the precipitation as sulfides in reducing conditions. In oxidizing condition, anionic complexes such as Pd(OH)3-, PdCl3(OH)2-, PdCl42-, and Pd(CO3)22- would be removed by sorption onto metal (hydro)oxides. This study will improve the understanding of the fate and transport of radionuclides in deep groundwater conditions of South Korea and therefore contributes to develop strategies for safe high-level radioactive waste disposal.

Synthesis of Vaterite Powders with a Spherical Shape by the Precipitation Method (침전법에 의한 구형 Vaterite분말의 합성)

  • 윤봉구;신대용;한상목
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.12
    • /
    • pp.1208-1212
    • /
    • 2003
  • CaCO$_3$ powders were synthesized by aqueous solution reaction of CaC1$_2$ㆍ2$H_2O$-(NH$_4$)$_2$CO$_3$ system with NH$_4$OH at 45$^{\circ}C$ and pHs 8, 9, 10, and 11 and in the concentration range of 0.1∼5 M and its polymorphism, morphology and size were investigated. In order to investigate the influence of pH on nucleation, pH was adjusted before and after reaction respectively. When pH was adjusted after reaction a formation ratio of vaterite was increased with increasing pH and concentration but vaterite was formed with calcite. But, when pH was adjusted before reaction, the formation rate of vaterite was increased with increasing pH and concentration. resulting in a phase-pure vaterite with a spherical shape and 2∼5 $\mu\textrm{m}$ in size. It was found that solubility of alkaline vaterite was decreased with increasing OH- ions in the high pH solution. When pH was adjusted before nucleation in the high concentration range, in particular, decreasing of solubility disturbed transformation of initially formed numerous vaterite to calcite.

Bioavailability of Iron-fortified Whey Protein Concentrate in Iron-deficient Rats

  • Nakano, Tomoki;Goto, Tomomi;Nakaji, Tarushige;Aoki, Takayoshi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.7
    • /
    • pp.1120-1126
    • /
    • 2007
  • An iron-fortified whey protein concentrate (Fe-WPC) was prepared by addition of ferric chloride to concentrated whey. A large part of the iron in the Fe-WPC existed as complexes with proteins such as ${\beta}$-lactoglobulin. The bioavailability of iron from Fe-WPC was evaluated using iron-deficient rats, in comparison with heme iron. Rats were separated into a control group and an iron-deficiency group. Rats in the control group were given the standard diet containing ferrous sulfate as the source of iron throughout the experimental feeding period. Rats in the iron-deficiency group were made anemic by feeding on an Fe-deficient diet without any added iron for 3 wk. After the iron-deficiency period, the iron-deficiency group was separated into an Fe-WPC group and a heme iron group fed Fe-WPC and hemin as the sole source of iron, respectively. The hemoglobin content, iron content in liver, hemoglobin regeneration efficiency (HRE) and apparent iron absorption rate were examined when iron-deficient rats were fed either Fe-WPC or hemin as the sole source of iron for 20 d. Hemoglobin content was significantly higher in the rats fed the Fe-WPC diet than in rats fed the hemin diet. HRE in rats fed the Fe-WPC diet was significantly higher than in rats fed the hemin diet. The apparent iron absorption rate in rats fed the Fe-WPC diet tended to be higher than in rats fed the hemin diet (p = 0.054). The solubility of iron in the small intestine of rats at 2.5 h after ingestion of the Fe-WPC diet was approximately twice that of rats fed the hemin diet. These results indicated that the iron bioavailability of Fe-WPC was higher than that of hemin, which seemed due, in part, to the different iron solubility in the intestine.

Effects of pH and Hardness Resulted from Total Carbonate Concentration on Sericin Solubilities (총탄산 농도에 따른 pH 및 경도가 견층 Sericin 용해에 미치는 영향)

  • Nam, Yeong-Rak;Chae, Dae-Seok;Seong, Jae-Cheon
    • Journal of Sericultural and Entomological Science
    • /
    • v.31 no.2
    • /
    • pp.121-126
    • /
    • 1989
  • Two kinds of solution for the measurement of solubilities of Sericin are prepared as followings at temperature 90 deg. C. One has the total carbonate concentration as 0, 50, 100mg CO2/l prepared with non-carbonate distilled water, sodium hydrogen carbonate and 0.1N HCI and NaOH, the other has total hardness, that is, calcium hardness or magnesium hardness as 0, 20, 50, 100mg CaCO2/l respectively prepared with non-carbonate distilled water, calcium carbonate and magnesium oxide. Solubilities of Cocoon layer Sericin at above solution gives following results ; 1. pH shows little effect on the solubility of Sericin at the non-carbonate solution but at the carbonate solution pH shows a sensitive effect on the solubility of Sericin. These means that pH controls the concentration of H2CO3, HCO3-and CO32- which prevent and promote the solution of Sericin. 2. After the cocoon layer treatment at the solution, the initial pH of 4.0, 7.0, 9.0 of the solution changed to 6.0-6.5 at the lower total carbonate solution. However in the higher total carbonate solution pH did not changed very much. This may be explained by the buffer action of carbonate. 3. The effect of the hardness on the solubility of Sericin was not found in the non-carbonate solution with the standard hardness after treatment of cocoon layer.

  • PDF

The Effects of Supercritical Carbon Dioxide on the Extraction of Perilla Oil (초임계 이산화탄소가 들기름의 추출에 미치는 영향)

  • Lee, Min-Jung;Kim, Ki-Hong;Bae, Jae-Oh
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.10
    • /
    • pp.1439-1443
    • /
    • 2006
  • This study was performed on the effects of extraction temperature, pressure, time on apparent solubility and extraction yield of perilla oil and tocopherol, and color and fatty acid composition of the residue in supercritical carbon dioxide $(SC-CO_2)$ extraction. Apparent solubility of perilla oil and tocopherol increased with the increase of $CO_2$ density and was found to strongly depend on extraction pressure rather than extraction temperature. The extract yield of tocopherol in $SC-CO_2$ extraction increased with an increase of temperature and decreased with an increase of pressure and extraction time. The perilla oil apparent solubility of dried perilla powder for $60\sim180$ min at $40^{\circ}C/276$ bar increased with an extraction time, on the other hands, tocopherol apparent solubility decreased. As the increase of $CO_2$ density, less redness and yellowness increased. Fatty acid composition of perilla oil showed that perilla oil extracted by $SC-CO_2$ had better unsaturated fatty acid and decreased in saturated fatty acid. $SC-CO_2$ extraction offers a safe natural method for gaining perilla oil from dried perilla seeds powder.

Carbon Dioxide Absorption Property of Physical Sorbent in the Pre-Combustion Condition (연소전 조건에서 물리흡수제를 이용한 이산화탄소 흡수특성)

  • Baek, Geun-Ho;You, Seung-Han;Cha, Wang-Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4643-4648
    • /
    • 2010
  • In this study, $CO_2$ absorption properties at high pressure condition that can apply pre-combustion $CO_2$ capture were investigated for physical sorbent such as PEG, DMSO, and Sulfone. The $CO_2$ Solubility, regeneration, and initial absorption rate with temperature and pressure were measured using batch type stirred cell contactor. The PEG showed the highest $CO_2$ solubility and initial absorption rate. It can be found that all the physical sorbents used in this experiments were almost completely regenerated at various temperature and pressure.

자화수에서 염류의 용해속도 변화와 자화수에 의한 NaCl, KCl 및 석고의 결정화 양상에 대한 연구

  • Jeon, Sang Il;Kim, Dong Ryul;Lee, Suk Keun
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.2
    • /
    • pp.116-120
    • /
    • 2001
  • In order to know the physicochemical properties of magnetized water, the experimental methods of column assay, crystalization of saltsand gypsom have been explored to elucidate the effects of magnetized water on the solubility speed of salts, crystal pattern from salt squeous solutions, and gypsom crystal pattern, respectively. In the column assay for salt solubility the magnetized water showed the decreased initial solubility speed of NaCl and slightly increased initial solubility spped of KCI, however, the maximum solugilities of NaCl and KCI in the magnetized aster were almost same in the double distilled water, respectively. The column assay also indicated that the magnetized water showed the decreased initial solubility speed of urea (CH$_4$N$_2$O), sodium citrate (HOC(CO$_2$Na)-(CH$_2$CO$_2$Na)$_2$-2H$_2$O) and (NH$_4$)$_2$compared to the double distilled water, while slightly increased solubility speed of glycine (NH$_2$CH$_2$COOH), boric acid (H$_3$BO$_3$), MgSO$_4$. Crystalization of 1% or 5% salt aqueous solutions by rapid evaporation disclosed that the magnetized water produced more condensed and bigger crystal structure than the control water. The pattern of gypsom crystal formation also indicated that the magntized water enhanced the crystal formation in the hydration reaction of gypsom plaster compared to the double distilled water. Taken together, it was presumed that the magnetized water showed the different physicochemical properties in the interaction with various salts, especially showed the contrast results between NaCl and KCI.

  • PDF

Solubility Measurement of Carbon Dioxide in Alkylcarbonates and Triacetin at High Pressure (고압에서 알킬카보네이트와 트리아세틴의 이산화탄소 용해도 측정)

  • Kim, Ji Won;Hong, Won Hi;Hong, Yeon Ki
    • Clean Technology
    • /
    • v.21 no.2
    • /
    • pp.124-129
    • /
    • 2015
  • The constant-volume method was used to determine the solubility of CO2 in various physical absorbents such as DMPEG (dimethyl ether of polyethylene glycol), DEC (diethyl carbonate), DMC (dimethyl carbonate), and TAT (triacetin) in the total pressure range from 5 to 30 bar. The Peng-Robinson equation of state has been used to describe the equilibrium behavior of these mixtures. It was found that the solubility of absorbents was in the of DMPEG250 > TAT > DEC > DMC at the same temperature. Futhermore, the solubiity of blended absorbent of DMPEG250 and DEC is higher than that of DMPEG 250 alone. Therefore, blended absorbent of DMPEG250 and DEC is expected to be an effective and low cost absorbent for physical absorption in precombustion CO2 capture.

Effect of Aluminum on Nitrogen Solubility in Zinc Oxide: Density Functional Theory (산화 아연에서의 질소 용해도에 대한 알루미늄의 효과 : 밀도 범함수 이론)

  • Kim, Dae-Hee;Lee, Ga-Won;Kim, Yeong-Cheol
    • Korean Journal of Materials Research
    • /
    • v.21 no.12
    • /
    • pp.639-643
    • /
    • 2011
  • Zinc oxide as an optoelectronic device material was studied to utilize its wide band gap of 3.37 eV and high exciton biding energy of 60 meV. Using anti-site nitrogen to generate p-type zinc oxide has shown a deep acceptor level and low solubility. To increase the nitrogen solubility in zinc oxide, group 13 elements (aluminum, gallium, and indium) was co-added to nitrogen. The effect of aluminum on nitrogen solubility in a $3{\times}3{\times}2$ zinc oxide super cell containing 72 atoms was investigated using density functional theory with hybrid functionals of Heyd, Scuseria, and Ernzerhof (HSE). Aluminum and nitrogen were substituted for zinc and oxygen sites in the super cell, respectively. The band gap of the undoped super cell was calculated to be 3.36 eV from the density of states, and was in good agreement with the experimentally obtained value. Formation energies of a nitrogen molecule and nitric oxide in the zinc oxide super cell in zinc-rich conditions were lower than those in oxygen-rich conditions. When the number of nitrogen molecules near the aluminum increased from one to four in the super cell, their formation energies decreased to approach the valence band maximum to some degree. However, the acceptor level of nitrogen in zinc oxide with the co-incorporation of aluminum was still deep.