• 제목/요약/키워드: $CO_2$ response

검색결과 1,573건 처리시간 0.033초

Experimental Animal Models of Coronavirus Infections: Strengths and Limitations

  • Mark Anthony B. Casel;Rare G. Rollon;Young Ki Choi
    • IMMUNE NETWORK
    • /
    • 제21권2호
    • /
    • pp.12.1-12.17
    • /
    • 2021
  • Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since the emergence of SARS-CoV-2 in the human population in late 2019, it has spread on an unprecedented scale worldwide leading to the first coronavirus pandemic. SARS-CoV-2 infection results in a wide range of clinical manifestations from asymptomatic to fatal cases. Although intensive research has been undertaken to increase understanding of the complex biology of SARS-CoV-2 infection, the detailed mechanisms underpinning the severe pathogenesis and interactions between the virus and the host immune response are not well understood. Thus, the development of appropriate animal models that recapitulate human clinical manifestations and immune responses against SARS-CoV-2 is crucial. Although many animal models are currently available for the study of SARS-CoV-2 infection, each has distinct advantages and disadvantages, and some models show variable results between and within species. Thus, we aim to discuss the different animal models, including mice, hamsters, ferrets, and non-human primates, employed for SARS-CoV-2 infection studies and outline their individual strengths and limitations for use in studies aimed at increasing understanding of coronavirus pathogenesis. Moreover, a significant advantage of these animal models is that they can be tailored, providing unique options specific to the scientific goals of each researcher.

Serological response 5 months after the BNT162b2 COVID-19 vaccination in patients with various hematological disorders in Japan

  • Yoshiaki Marumo;Takashi Yoshida;Yuki Furukawa;Kenji Ina;Ayumi Kamiya;Takae Kataoka;Satoshi Kayukawa
    • Clinical and Experimental Vaccine Research
    • /
    • 제12권4호
    • /
    • pp.319-327
    • /
    • 2023
  • Purpose: Patients with hematological malignancies are at an increased risk of severe infection with coronavirus disease 2019 (COVID-19). However, developing an adequate immune response after vaccination is difficult, especially in patients with lymphoid neoplasms. Since the long-term effects of the BNT162b2 vaccine are unclear, the humoral immune response 5 months after the two vaccinations in patients with hematological disorders was analyzed. Materials and Methods: Samples were collected from 96 patients vaccinated twice with BNT162b2 and treated with at least one line of an antitumor or immunosuppressive drug in our hospital from November 2021 to February 2022. Serum anti-severe acute respiratory syndrome coronavirus 2 (anti-SARS-CoV-2) spike (S) antibody titers were analyzed. Patients were age- and sex-matched using propensity matching and compared with a healthy control group. Patients with serum anti-SARS-CoV-2 S antibodies were defined as 'responder' if >50 U/mL. The patients had B-cell non-Hodgkin lymphoma (B-NHL), multiple myeloma, chronic myeloid leukemia, etc. Results: Patients had significantly low antibody levels (median, 55.3 U/mL vs. 809.8 U/mL; p<0.001) and a significantly low response rate (p<0.001). Multivariate analysis showed that patients with B-NHL, aged >72 years, were associated with a low response to vaccination. There were no significant differences between patients with chronic myeloid leukemia and healthy controls. Conclusion: Our study shows that patients with hematological disorders are at risk of developing severe COVID-19 infections because of low responsiveness to vaccination. Moreover, the rate of antibody positivity differed between the disease groups. Further studies are warranted to determine an appropriate preventive method for these patients, especially those with B-NHL.

A Probiotic Preparation Alleviates Atopic Dermatitis-Like Skin Lesions in Murine Models

  • Kim, Min-Soo;Kim, Jin-Eung;Yoon, Yeo-Sang;Seo, Jae-Gu;Chung, Myung-Jun;Yum, Do-Young
    • Toxicological Research
    • /
    • 제32권2호
    • /
    • pp.149-158
    • /
    • 2016
  • Atopic dermatitis (AD) is a chronic inflammatory skin disease with a complex etiology that encompasses immunologic responses. AD is frequently associated with elevated immunoglobulin (Ig) E levels, and common environmental factors contribute to its pathogenesis. Several recent studies have documented the role of specific lactic acid bacteria in the treatment and prevention of AD in humans and mice. In this study, the efficacy of Duolac ATP, a probiotic preparation, was determined in a mouse model with AD-like skin lesions. Alterations in the cytokine levels and histological staining suggested the alleviation of AD. The in vivo test showed that T helper (Th)2 cytokines, IgE, interleukin (IL)-4, and IL-5, were significantly downregulated, whereas Th1 cytokines, IL-12p40 and interferon (IFN)-${\gamma}$, were upregulated in all groups of mice treated with Duolac ATP compared to that observed in the group of mice treated with 1-chloro-2,4-dinitrobenzene (DNCB) alone. Moreover, the scratch score decreased in all mice treated with Duolac ATP. Staining of the dorsal area of the mice in each group with hematoxylin and eosin and toluidine blue further confirmed the alleviation of AD in mice orally treated with Duolac ATP. These results suggest that Duolac ATP inhibits the development of AD-like skin lesions in NC/Nga mice by suppressing the Th2 cell response and increasing the Th1 cell response. Thus, Duolac ATP is beneficial and effective for the treatment of AD-like skin lesions.

YKP1447, A Novel Potential Atypical Antipsychotic Agent

  • Dong, Seon-Min;Kim, Yong-Gil;Heo, Joon;Ji, Mi-Kyung;Cho, Jeong-Woo;Kwak, Byong-Sung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제13권2호
    • /
    • pp.71-78
    • /
    • 2009
  • (S)-Carbamic acid 2-[4-(4-fluoro-benzoyl)-piperidin-1-yl]-1-phenyl-ethyl ester hydrochloride (YKP1447) is a novel "atypical" antipsychotic drug which selectively binds to serotonin (5-$HT_{2A}$, Ki=0.61 nM, 5-$HT_{2C}$, Ki=20.7 nM) and dopamine ($D_2$, Ki=45.9 nM, $D_3$, Ki=42.1 nM) receptors with over $10\sim100$-fold selectivity over the various receptors which exist in the brain. In the behavioral studies using mice, YKP1447 antagonized the apomorphine-induced cage climbing ($ED_{50}$=0.93 mg/kg) and DOI-induced head twitch ($ED_{50}$=0.18 mg/kg) behavior. In the dextroamphetamine-induced hyperactivity and conditioned avoidance response (CAR) paradigm in rats, YKP1447 inhibited the hyperactivity induced by amphetamine ($ED_{50}$=0.54 mg/kg) and the avoidance response ($ED_{50}$=0.48 mg/kg); however, unlike other antipsychotic drugs, catalepsy was observed only at much higher dose ($ED_{50}$=68.6 mg/kg). Based on the CAR and catalepsy results, the therapeutic index (TI) value for YKP1447 is over 100 (i.p.). These results indicate that YKP1447 has an atypical profile and less undesirable side effects than currently available drugs.

3D-QSAR Studies of 8-Substituted-2-aryl-5-alkylaminoquinolines as Corticotropin-releasing Factor-1 Receptor Antagonists

  • Nagarajan, Santhosh Kumar;Madhavan, Thirumurthy
    • 통합자연과학논문집
    • /
    • 제8권3호
    • /
    • pp.176-183
    • /
    • 2015
  • Corticotropin-releasing actor receptors (CRFRs) activates the hypothalamic pituitary adrenal axis, one of the 2 parts of the fight or flight response to stress. Increased CRH production has is associated with Alzheimer's disease and major depression and hypoglycemia. In this study, we report the important structural and chemical parameters for CRFR inhibitors using the derivatives of 8-substituted-2-aryl-5-alkylaminoquinolines. A 3D QSAR study, Comparative molecular field analysis (CoMFA) was performed. The best predictions were obtained for the best CoMFA model with a $q^2$ of 0.607 with 6 components and $r^2$ of 0.991. The statistical parameters from the generated CoMFA models indicated that the data are well fitted and have high predictive ability. The contour map resulted from the CoMFA models might be helpful in the future designing of novel and more potent CRFR derivatives.

제작된 수직 마이크로미러 어레이의 특성 측정 (Characteristics measurement of fabricated micromirror array with vertical springs)

  • 신종우;김용권;박진구;신형재;문재호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 추계학술대회 논문집 학회본부
    • /
    • pp.618-620
    • /
    • 1997
  • A $50{\times}50{\mu}m^2$ aluminum micromirror array is fabricated using shadow evaporation process. The fabrication process is very simple with use of shadow evaporation process, and the micromirror array has a high fill-factor. The static and dynamic characteristics such as deflection angle vs. applied voltage, step response, and frequency response are measured using a contact free optical measurement technique. The downward threshold voltage was 8 V, step response time was $13.5{\mu}s$ when 32 V step voltage applied, and a resonance observed at 11kHz. The lifetime of micromirror with anti-stiction coating was tested and micromirror operated successfully over 200 million cycles of touch-down operations.

  • PDF

SARS-CoV-2 infection induces expression and secretion of lipocalin-2 and regulates iron in a human lung cancer xenograft model

  • Sangkyu Park;Dongbum Kim;Jinsoo Kim;Hyung-Joo Kwon;Younghee Lee
    • BMB Reports
    • /
    • 제56권12호
    • /
    • pp.669-674
    • /
    • 2023
  • Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection leads to various clinical symptoms including anemia. Lipocalin-2 has various biological functions, including defense against bacterial infections through iron sequestration, and it serves as a biomarker for kidney injury. In a human protein array, we observed increased lipocalin-2 expression due to parental SARS-CoV-2 infection in the Calu-3 human lung cancer cell line. The secretion of lipocalin-2 was also elevated in response to parental SARS-CoV-2 infection, and the SARS-CoV-2 Alpha, Beta, and Delta variants similarly induced this phenomenon. In a Calu-3 implanted mouse xenograft model, parental SARSCoV-2 and Delta variant induced lipocalin-2 expression and secretion. Additionally, the iron concentration increased in the Calu-3 tumor tissues and decreased in the serum due to infection. In conclusion, SARS-CoV-2 infection induces the production and secretion of lipocalin-2, potentially resulting in a decrease in iron concentration in serum. Because the concentration of iron ions in the blood is associated with anemia, this phenomenon could contribute to developing anemia in COVID-19 patients.

저 전력용 CO가스 감지소자 (C Gas Sensors Operating at Relatively Low Temperature)

  • 이성필;이용현;이덕동;손병기
    • 대한전자공학회논문지
    • /
    • 제23권6호
    • /
    • pp.766-772
    • /
    • 1986
  • SnO2/Pt CO gas sensors operating at relatively low temperature were fabricated, and their performance characteristics were measured. When the mixing weight ratio of SnO2/Pt was 99.5/0.5, a good sensitivity to CO gas was obtained. And the experimental results were in consistent with the gas sensing model. The optimum operating, temperature range of the fabricated devices was 50-80\ulcorner and the response time was 15 sec. at 80\ulcorner in 1000 ppm CO ambient. The humidity dependence of sensitibity to CO gas could be reduced by adding hydrophokbic silica to the mixture of SnO2 and Pt. For the practical application of the fabricated devices, a CO gas alarming system has been developed.

  • PDF

A Volatile Organic Compound Sensor Using Porous Co3O4 Spheres

  • Kim, Tae-Hyung;Yoon, Ji-Wook;Lee, Jong-Heun
    • 한국세라믹학회지
    • /
    • 제53권2호
    • /
    • pp.134-138
    • /
    • 2016
  • Porous $Co_3O_4$ spheres with bimodal pore distribution (size: 2-3 nm and ~ 30 nm) were prepared by ultrasonic spray pyrolysis of aqueous droplets containing Co-acetate and polyethylene glycol (PEG), while dense $Co_3O_4$ secondary particles with monomodal pore distribution (size: 2-3 nm) were prepared from the spray solution without PEG. The formation of mesopores (~ 30 nm) was attributed to the decomposition of PEG. The responses of a porous $Co_3O_4$ sensor to various indoor air pollutants such as 5 ppm $C_2H_5OH$, xylene, toluene, benzene, and HCHO at $200^{\circ}C$ were found to be significantly higher than those of a commercial sensor using $Co_3O_4$ and dense $Co_3O_4$ secondary particles. Enhanced gas response of porous $Co_3O_4$ sensor was attributed to high surface area and the effective diffusion of analyte gas through mesopores (~ 30 nm). Highly sensitive porous $Co_3O_4$ sensor can be used to monitor various indoor air pollutants.

Fragment based QSAR Analysis of CXCR-2 Inhibitors Using Topomer CoMFA Approach

  • Thirumurthy, M
    • 통합자연과학논문집
    • /
    • 제10권4호
    • /
    • pp.209-215
    • /
    • 2017
  • CXC chemokine receptor 2 (CXCR2) is a prominent chemokine receptor on neutrophils. CXCR2 antagonist may reduce the neutrophil chemotaxis and alter the inflammatory response because the neutrophilic inflammation in the lung diseases is found to be largely regulated through CXCR2 receptor. Hence, in the present study, Topomer based Comparative Molecular Field Analysis (Topomer CoMFA) was performed on a series of CXCR2 antagonist named pyrimidine-5-carbonitrile-6-alkyl derivatives. The best Topomer COMFA model was obtained with significant cross-validated correlation coefficient ($q^2$ = 0.487) and non cross-validated correlation coefficients ($r^2$ = 0.980). The model was evaluated with six external test compounds and its $r^2{_{pred}}$ was found to be 0.616. The steric and electrostatic contribution map show that presence of bulkier and electropositive group around cyclopropyl ring may contribute more for improving the biological activities of these compounds. The generated Topomer CoMFA model could be helpful for future design of novel and structurally related CXCR2 antagonists.