• Title/Summary/Keyword: $CO_2$ reforming

Search Result 246, Processing Time 0.035 seconds

$CO_2$ reforming using $TiO_2$/Ni catalysts prepared by atomic layer deposition

  • Kim, Dong-Wun;Kim, Kwang-Dae;Seo, Hyun-Ook;Dey, Nilay Kumar;Kim, Myoung-Joo;Kim, Young-Dok;Lim, Dong-Chan;Lee, Kyu-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.443-443
    • /
    • 2011
  • Atomic layer deposition (ALD) was used to deposit $TiO_2$ on Ni particles, and changes in the catalytic activity of Ni for $CO_2$ reforming of methane (CRM) were studied. In the presence of $TiO_2$ islands on Ni surfaces, the onset temperature of the CRM reaction was lower than that of bare Ni. During the CRM reaction, carbon was deposited on the surface, reducing the catalytic activity of the surface, but $TiO_2$ was able to remove the carbon deposits from the surface. When the Ni surface was completely covered with $TiO_2$, catalytic activity disappeared, indicating that tuning of $TiO_2$ coverage on Ni is important for maximizing the activity of the CRM reaction.

  • PDF

Study on Effects of Ni/Al2O3 Catalysts Added with Mo on Durability Improvement in Steam Reforming Reactions (Mo를 첨가한 Ni/Al2O3 촉매의 수증기 개질반응에서의 내구성 증진 특성연구)

  • Won, Jong Min;Park, Gi Woo;Lee, Jin Woo;Hong, Sung Chang
    • Korean Chemical Engineering Research
    • /
    • v.54 no.4
    • /
    • pp.560-567
    • /
    • 2016
  • In this study, we characterized steam reforming reactions and surface of $Ni/Al_2O_3$ catalysts. Ni-Mo based catalysts were prepared by loading Mo as the co-catalyst and reaction activities of the Ni-Mo based catalysts were compared with those of Ni-based catalysts. Through the $H_2$-TPR and XPS analysis it was confirmed that this characteristic efficiency. $O_2$-TPO analysis was performed to examine the deposition characteristics, bonding structures and evaporation characteristics of carbon deposited on the surface of catalysts after long run experiments were performed for steam reforming reactions. As the results, it was found that durability was improved in Ni-Mo based catalysts inhibiting formation of graphitic carbon species which reduced reaction activities of the catalysts by strongly interacting with Ni in the steam reforming reaction.

A Study on the Performance of Ni Catalysts in Biogas Steam Reforming: Impact of Supports and Precipitation Agent Injection Rates (바이오가스 수증기 개질 반응용 Ni 촉매 성능 연구: 지지체 및 침전제 주입 속도에 따른 영향)

  • Ji-Hyeon Gong;Min-Ju Kim;Kyung-Won Jeon;Won-Jun Jang
    • Clean Technology
    • /
    • v.29 no.4
    • /
    • pp.327-332
    • /
    • 2023
  • This study investigated synthesis gas production via steam reforming of biogas. Ni-Al2O3 and Ni-CeO2 catalysts were synthesized using the co-precipitation method, with controlled precipitation agent injection rates. Catalytic performances were tested at various temperatures, with a gas composition ratio of CH4:CO2:H2O = 1:0.67:3 and a gas hourly space velocity (GHSV) of 647,000 mL h-1 gcat-1. The rate of precipitation agent injection influenced the characteristics of the catalysts depending on the type of support used. As the temperature increased, both the CO2 reforming of methane and the reverse water gas shift reactions occurred. The Ni-Al2O3 catalyst, synthesized with a single injection of the precipitation agent, exhibited the best catalytic activity under conditions with sufficient steam supply among the prepared catalysts, due to its high Ni dispersion.

GTL(Gas-to-Liquid) 기술 현황

  • Jun, Gi-Won
    • Journal of Energy Engineering
    • /
    • v.16 no.2
    • /
    • pp.58-63
    • /
    • 2007
  • In recent years, the technologies for the production of synthetic fuel from natural gas have been attracting considerable interest because of high oil prices. While oil prices remaining high, GTL (Gas-to-Liquids) technology would provide an attractive option for utilizing gas resources. Furthermore, GTL fuels contain almost zero sulfur and low aromatics and have a very high cetane so that they are estimated to be environmentally friendly diesel fuels able of meeting the advanced fuel specifications of the 21st century. GTL process generally consists of three primary steps: synthesis gas production from natural gas reforming, hydrocarbon production from synthesis gas by Fischer-Tropsch (F-T) synthesis, product upgrading by hydrocracking/hydroisomerization. This paper presents a brief summary of GTL technology and worldwide development trend about it focusing on the reforming of natural gas and the F-T synthesis.

Methane Dry Reforming over Ru/CeO2 catalysts (Ru/CeO2 촉매를 이용한 메탄 건식 개질)

  • HIEN, NGUYEN THI BICH;JEON, MINA;RIDWAN, MUHAMMAD;TAMARANY, RIZCKY;YOON, CHANG WON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.3
    • /
    • pp.221-226
    • /
    • 2015
  • Ru catalysts supported on $CeO_2$ were synthesized by an impregnation method and characterized by numerous analytical techniques including X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), transmission electron microscopy (TEM), and scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS). Upon utilization of these catalysts for methane dry reforming with a $CH_4/CO_2$ ratio of 1:1 at different temperatures ranging from 550 to $750^{\circ}C$, the $Ru/CeO_2$ catalysts have shown to be active. In particular, Ru(0.55wt%) supported on $CeO_2$ (1) prepared by a hydrothermal method exhibited excellent activity with the conversion of > 75% at $750^{\circ}C$. In addition, the catalyst also proved to be highly stable for at least 47 h without catalyst deactivation under the dry reforming conditions.

GTL(Gas To Liquid) Technologies Trend for Synthetic Fuel Production (합성연료 제조를 위한 GTL(Gas To Liquid) 기술동향)

  • Jeong, Byung-Hun;Han, Jeong-Sik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.717-720
    • /
    • 2011
  • Due to the depletion of fossil fuel, high oil price and global warming issue by green house gas such as CO2, clean synthetic fuel technologies using biomass, especially GTL(Gas To Liquid) technology, have been greatly attracted. This paper has examined and compared the worldwide technologies trend of natural gas reforming reaction, F-T(Fisher-Tropsch) synthesis and upgrading process which are three backbones of GTL technology.

  • PDF

Modeling, Simulation and Optimization of Hydrogen Production Process from Glycerol using Steam Reforming (글리세롤로부터 수증기 개질에 의한 수소 생산공정의 모델링, 시뮬레이션 및 최적화)

  • Park, Jeongpil;Cho, Sunghyun;Lee, Seunghwan;Moon, Dong Ju;Kim, Tae-Ok;Shin, Dongil
    • Korean Chemical Engineering Research
    • /
    • v.52 no.6
    • /
    • pp.727-735
    • /
    • 2014
  • For improved sustainability of the biorefinery industry, biorefinery-byproduct glycerol is being investigated as an alternate source for hydrogen production. This research designs and optimizes a hydrogen-production process for small hydrogen stations using steam reforming of purified glycerol as the main reaction, replacing existing processes relying on steam methane reforming. Modeling, simulation and optimization using a commercial process simulator are performed for the proposed hydrogen production process from glycerol. The mixture of glycerol and steam are used for making syngas in the reforming process. Then hydrogen are produced from carbon monoxide and steam through the water-gas shift reaction. Finally, hydrogen is separated from carbon dioxide using PSA. This study shows higher yield than former U.S. DOE and Linde studies. Economic evaluations are performed for optimal planning of constructing domestic hydrogen energy infrastructure based on the proposed glycerol-based hydrogen station.

The performance evaluation for H2 reforming of the plate type hydrogen generation system (평판형 수소생산시스템의 수소개질 성능평가)

  • Heo, Su-Bin;Yun, Bong-Seock;Lee, Do-Hyung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.602-608
    • /
    • 2014
  • Hydrogen energy, a field of low-carbon substitute energy, can be produced by fossile fuel reforming and electrolysis of water etc. We developed 1kW class flat type reformer for PEM Fuel Cells. The PEMFC is highly sensitive to carbon monoxide because CO has detrimental effects on the performance of the fuel cell. Thus, reformed gas supplied to Fuel cell system, which maintained CO concentration below 10ppm. After applying optimum drive condition, reformed gas was measured with gas chromatography and could find out about each experimental condition of $H_2$ and CO concentration. As a results, The 1kW class plate type hydrogen generation system's optimum condition is A/F ratio ${\alpha}=1.3$, STR temperature 1023K, S/C ratio 3, and $PrOx1{\cdot}2$ 30cc/min. It turns out that installation of PrOx 2 stage is more efficient for reducing CO concentration.

Effect of Cu Addition in Cu/Fe/Zr-Mixed Metal Oxide Mediums for Two-step Thermochemical Methane Reforming (2단계 열화학 메탄 개질을 위한 Cu/Fe/Zr-혼합 산화물 매체 내 Cu 첨가 효과)

  • Cha, Kwang-Seo;Kim, Hong-Soon;Lee, Dong-Hee;Jo, Won-Jun;Lee, Young-Seak;Kim, Young-Ho
    • Applied Chemistry for Engineering
    • /
    • v.18 no.6
    • /
    • pp.618-624
    • /
    • 2007
  • thermochemical methane reforming consisting of two steps on Cu/Fe/Zr mixed oxide media was carried out using a fixed bed infrared reactor. In the first step, the metal oxide was reduced with methane to produce CO, $H_2$ and the reduced metal oxide in the temperature of 1173 K. In the second step, the reduced metal oxide was re-oxidized with steam to produce $H_2$ and the metal oxide in the temperature of 973 K. The reaction characteristics on the added amounts of Cu in Cu/Fe/Zr mixed oxide media and the cyclic tests were evaluated. With the increase of the added amount of Cu in Cu/Fe/Zr mixed oxide media, the conversion of $CH_4$, the selectivity of $CO_2$ and the $H_2/CO$ molar ratio were increased, while the selectivity of CO was decreased in the first step. On the other hand, the evolved amount of $H_2$ was decreased with increasing the added amount of Cu in the second step. The $Cu_xFe_{3-x}O_4/ZrO_2$ medium added with Cu of x = 0.7 showed good regeneration properties in the 10th cyclic tests indicating that the medium had high durability. In addition, the gasification of the deposited carbon in the water splitting step was promoted with the addition of Cu in the media.