• Title/Summary/Keyword: $CO_2$ generator

Search Result 215, Processing Time 0.03 seconds

Development of Complex Module Device for Odor Reduction in Sewage

  • KIM, Young-Do;JEONG, Tae-Hwan;Kim, Su-Hye;KWON, Woo-Taeg
    • Journal of Wellbeing Management and Applied Psychology
    • /
    • v.5 no.4
    • /
    • pp.51-56
    • /
    • 2022
  • Purpose: By applying an ultrasonic mechanical device to the liquid fertilizer storage in the pig dropping treatment plant, the initial odor of the odor source is reduced, and the air dilution drainage of the complex odor is fundamentally recognized to facilitate odor treatment on the mechanical and chemical biological treatment devices at the rear. Research design, data and methodology: The odor concentration on the site boundary was measured to confirm the state of reduction. In order to prevent the spread of odor from the collection of the pig dropping treatment plant, it was measured by installing an ultrasonic generator inside the installation wall after installing the sealing wall. Results: The average value of the March and April measurement data remained close to neutral at 8.2 after 8.6 treatment before pH treatment, decreased 97.3% from 462 mg/L before SS treatment to 10.5 mg/L after treatment, and the composite odor was reduced by 85% from 20 to 3 before treatment. It was confirmed that ammonia (NH3) was reduced by 99% from 5.8 ppm to 0.09 ppm, and general bacteria were also reduced by 99% from 3,200 CFU/mL to 57 CFU/mL Conclusion: Applying the ultrasonic air ejector hybrid system and zigzag air complex module development product to resource circulation centers or sewage treatment facilities is thought to reduce inconvenience to residents due to odors caused.

Characteristics of Vitrification Process for Mixture of Simulated Radioactive Waste Using Induction Cold Crucible Melter (유도가열식 저온용융로를 이용한 혼합모의 방사성폐기물의 유리화 공정 특성)

  • 김천우;양경화;박병철;박승철;황태원;박종길;신상운;하종현;송명재
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.2 no.3
    • /
    • pp.165-174
    • /
    • 2004
  • In order to simultaneously vitrify the ion exchange resin(IER) and combustible dry active waste(DAW) generated from Korean nuclear power plants, a vitrification pilot test was conducted using an induction cold crucible melter(CCM) . The energy necessary for startup of the glass using a Ti-ring was evaluated as about 290 kWh. The power supplied from a high frequency generator to melt the glass properly was ranged from 160 to 190 kW without any interruption. When the mixture of the IER and DAW was fed into the CCM, the concentration of CO was lowered up to 1/40 compared to feeding the IER solely. It may be caused by the DAW which can produce about 1.8 times higher heat compared to the IER. When the swelling phenomenon occurred in the glass melt, the concentration of $NO_2$, oxidizing gas, was higher than NO, reducing gas. Total feed amounts of the IER and DAW were 368 and 751 kg, respectively. And then, about 74 of volume reduction factor was achieved.

  • PDF

Normal Operation Characteristics of 30kW Scale CVCF Inverter-Based Micro-grid System (30kW급 CVCF 인버터 기반의 Micro-grid의 정상상태 운용특성에 관한 연구)

  • Ferreira, Marito;Lee, Hu-Dong;Tae, Dong-Hyun;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.662-671
    • /
    • 2020
  • Recently, for the purposes of reducing carbon dioxide(CO2) emissions in the island area, countermeasures to decrease the operation rate of diesel generator(DG) and to increase one of renewable energy sources(RES) is being studied. In particular, the demonstration and installation of stand-alone micro-grid(MG) system which is composed of DG, RES and energy storage system(ESS) has been implemented in some island areas such as Gapa-do, Gasa-do and Ulleung-do island. However, many power quality(PQ) problems may be occurred due to an intermittent output of RES including photovoltaic(PV) system and wind power(WP) system in a normal operating of constant voltage & constant frequency(CVCF) inverter-based MG system. Therefore, this paper presents a modeling of the 30kW scale MG system using PSCAD/EMTDC, and also implements a 30kW scale CVCF inverter-based MG system as test devices to analyze normal operating characteristics of MG system. From the simulation and test results, it is confirmed that the proposed methods are useful and practical tools to improve PQ problems such as under-voltage, over-voltage and unbalanced load in CVCF inverter-based MG system.

Water Quality Modelling of Flood Control Dam by HSPF and EFDC (HSPF-EFDC 모델을 연계한 홍수조절댐 수질 변화 예측)

  • Lee, Young-Gi;Hwang, Sang-Chul;Hwang, Hyun-Dong;Na, Jin-Young;Yu, Na-Young;Lee, Han-Jin
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.3
    • /
    • pp.251-266
    • /
    • 2018
  • This study predicted the effect of operation pattern of flood control dam on water quality. Flood control dam temporarily impound floodwaters and then release them under control to the river below the dam preventing the river ecosystem from the extreme flood. The Hydrological Simulation Program Fortran (HSPF) and the Environmental Fluid Dynamics Code (EFDC) were adapted to predict the water quality before and after the dam construction in the proposed reservoir. The non-point pollutant delivery load from the river basin was estimated using the HSPF, and the EFDC was used to predict the water quality using the provided watershed boundary conditions from the HSPF. As a result of water quality simulation, it is predicted that the water quality will be improved due to the decrease of pollution source due to submergence after dam construction and temporary storage during rainfall. There would be no major water quality issues such as the eutrophication in the reservoir since the dam would impound the floodwater for a short time (2~3 days). In the environmental impact assessment stage of a planned dam, there may be some limitations to the exact simulation because the model can not be sufficiently calibrated. However, if the reliability of the model is improved through the acquisition of actual data in the future, it will be possible to examine the influence of the water environment according to various operating conditions in the environmental impact assessment of the new flood control dam.

Improvement of the performance and emission in a four-stroke diesel engine using fuel additive (4행정 디젤엔진에 연료첨가제 사용에 따른 성능 및 배기배출물 개선에 관한 연구)

  • Ryu, Younghyun;Lee, Youngseo;Nam, Jeonggil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.9
    • /
    • pp.762-767
    • /
    • 2016
  • High thermal efficiency and the ability to use various types of fuel are a few of the many advantages of diesel engines. However, a major disadvantage is that their exhaust emissions are more harmful to humans and the environment than that of conventional engine. Consequently, the provisions of the international emissions standards for diesel engine equipped passenger cars, commercial vehicles, and ships have become more stringent. These standards include the EU Euro 6, the IMO MEPC Tier 3, and the US EPA Tier 4. Ryu et al. published a study that applied fuel additives to two-stroke diesel engines. In this study, a four-stroke diesel engine using diesel oil for a generator is utilized as the test subject, and an experiment is performed to verify whether fuel additive can be used to improve performance and exhaust emissions. In addition, this experimental study presents research results for the application of fuel additives in both two-stroke and four-stroke diesel engines. The experimental results were compared and analyzed by placing an oil-soluble calcium-based organometallic compound in diesel oil. The results confirmed that the addition of fuel additive improved the performance (fuel consumption rate, exhaust gas temperature) and exhaust emissions (NOx, CO) of the diesel engine.

Efficiency Analysis of Compact Type Steam Reformer (컴팩트형 수증기 개질장치 효율분석)

  • Oh, Young-Sam;Song, Taek-Yong;Baek, Young-Soon;Choi, Lee-Sang
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.4
    • /
    • pp.304-312
    • /
    • 2002
  • In this study, the performance of the $5Nm^3/hr$ compact type steam reformer which was developed for application of fuel cell or hydrogen station was evaluated in terms of gas process efficiency. For these purposes, reforming efficiency and total efficiency with system load change were analyzed. The reforming efficiency was calculated from the total molar flow of hydrogen output over total fuel flow input to the reformer and the burner on the higher heating value(HHV). In the case of the total efficiency, recovered heat at the heat recovery exchanger was considered. From the results, it was known that system performance was stable, because methane conversion showed the a slight decline which is about 2% though increasing system load to full. Reforming efficiency was increased from 20% to 58%, respectively as increasing system load from 10% to 90%. It was found that total efficiency was higher then reforming efficiency because of terms of heat recovered. As a results, it was known that total efficiency was increased form 75% to 83% at the 10% and 90% system load, respectively. From these results, it is concluded that compact steam reformer which is composed of stacking plate-type reactors is suitable to on-site hydrogen generator or to fuel cell application because of quick start within 1 hr and good performance.

A Study on the Algorithm for the Determination of Fault Section in Bidirectional Distribution Line (양방향 배전선로에서 고장구간 판단 알고리즘 연구)

  • Park, Hak-Yeol;Seo, Dong-Kwen
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.521_523
    • /
    • 2009
  • 최근 고유가에 따른 발전비용 증가와 교토의정서 발휘로 인한 $CO_2$ 저감의무 등 환경보전이라는 사회적 요구와 맞물려 새로운 신재생에너지 분야에 관심이 고조되고 있는 실정이다. 이러한 신재생에너지로 대표되는 풍력, 태양광, 연료전지 등을 이용하는 발전방식은 저용량의 발전으로 대규모 집중형 전원이 아니 전력 수요지 근방에서 설치되는 비교적 작은 규모의 분산형전원(DG;Distribution Generator)으로 배전선로에 직접 연계됨에 따라 배전계통에도 큰 변화가 일고 있다. 분산전원(DG)이 배전계통에 연계됨에 따라 전압변동에 따른 전압조정, 고조파 계통유입에 따른 전기품질, 계통고장시의 분산전원의 단독운전 방지, 고장전류의 분산에 따른 선로의 보호협조 등 다양한 새로운 문제점이 대두되고 있고 이를 해결하기 위해 연구개발 및 신기자재개발 등이 활발히 진행되고 있다. 현재 배전자동화시스템에 적용되고 있는 고장검출 알고리즘은 단방향으로 전기를 공급하던 전통적인 배전방식에서 단순 과전류요소에 의해 고장검출하는 알고리즘을 적용하고 있기 때문에 분산전원이 연계된 양방향 전기공급 배전계통에서는 정확하게 고장구간을 검출하기 어렵다. 이로 인해 고장판단 문제점과 보호기기의 오동작 등으로 정확하게 고장구간을 판단하지 못하여 광역정전이 발생되고 고장복구가 장시간 소요되고 있는 실정이다. 본 논문에서는 이를 해소하기 위해 양방향 전기공급 배전계통에서 고장이 발생시 고장점으로 유입되는 고장전류의 파형형태를 분석하여 고장 구간을 판단하는 알고리즘을 소개하고자 한다. 또한 다기능 mFRTU(mFRTUmulti-function Feeder Remote Terminal Unit) 의 고장 구간 판단 알고리즘의 신뢰성을 검증하기 위해 실선로에서 실증시험을 시행하였으며, 그 결과를 분석하여 타당성을 제시하고자 한다.

  • PDF

Enhanced Production of Human Serum Albumin by Fed-Batch Culture of Hansenula polymorpha with High-Purity Oxygen

  • Youn, Jong-Kyu;Shang, Longan;Kim, Moon-Il;Jeong, Chang-Moon;Chang, Ho-Nam;Hahm, Moon-Sun;Rhee, Sang-Ki;Kang, Hyun-Ah
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.11
    • /
    • pp.1534-1538
    • /
    • 2010
  • Fed-batch cultures of Hansenula polymorpha were studied to develop an efficient biosystem to produce recombinant human serum albumin (HSA). To comply with this purpose, we used a high-purity oxygen-supplying strategy to increase the viable cell density in a bioreactor and enhance the production of target protein. A mutant strain, H. polymorpha GOT7, was utilized in this study as a host strain in both 5-l and 30-l scale fermentors. To supply high-purity oxygen into a bioreactor, nearly 100% high-purity oxygen from a commercial bomb or higher than 93% oxygen available in situ from a pressure swing adsorption (PSA) oxygen generator was employed. Under the optimal fermentation of H. polymorpha with highpurity oxygen, the final cell densities and produced HSA concentrations were 24.6 g/l and 5.1 g/l in the 5-l fermentor, and 24.8 g/l and 4.5 g/l in the 30-l fermentor, respectively. These were about 2-10 times higher than those obtained in air-based fed-batch fermentations. The discrepancies between the 5-l and 30-l fermentors with air supply were presumably due to the higher contribution of surface aeration over submerged aeration in the 5-l fermentor. This study, therefore, proved the positive effect of high-purity oxygen in enhancing viable cell density as well as target recombinant protein production in microbial fermentations.

Effect of Ultrasound on the Decomposition of Sodium Dodecylbenzene Sulfonate in Aqueous Solution (Sodium Dodecylbenzene Sulfonate 수용액의 분해반응에서 초음파 효과)

  • Yim, Bong-Been
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.6
    • /
    • pp.561-567
    • /
    • 2004
  • The influence of ultrasound frequency, dissolved gases, and initial concentration on the decomposition of sodium dodecylbenzene sulfonate(DBS) aqueous solution was investigated using ultrasound generator with 200 W ultrasound power. The decomposition rates at three frequencies(50, 200, and 600 kHz) examined under argon atmosphere were highest at 200 kHz. The highest observed decomposition rate at 200 kHz occurred in the presence of oxygen followed by air and argon, helium, and nitrogen. The effect of initial concentration of DBS on the ultrasonic decomposition was decreased with increasing initial concentration and would depend upon the formation of micelle in aqueous solution. It appears that the ultrasound frequency, dissolved gases, and initial concentration play an important role on the sonolysis of DBS. Sonolysis of DBS mainly take place at the interfacial region of cavitation bubbles by both OH radical attack and pyrolysis to alkyl chain, aromatic ring, and headgroup.

Leaching of Ruthenium by Electro-generated Chlorine Gas by Electrochemical Method (전기화학법(電氣化學法)에 의해 생성(生成)된 전해생성(電解生成) 염소(鹽素)를 이용한 루테늄의 침출(浸出))

  • Ahn, Jong-Gwan;Lee, Ah-Rum;Kim, Min-Seuk;Ahn, Jae-Woo;Lee, Jae-Ryeoung
    • Resources Recycling
    • /
    • v.22 no.6
    • /
    • pp.55-63
    • /
    • 2013
  • In this study, a electrochemical-chemical combined dissolution technology was conducted by electro-generated chlorine to obtain ruthenium solution from ruthenium metal. To find out the optimum leaching conditions of ruthenium in chloride solution, this leaching process was carried out on the variation of pH, reaction time, temperature and applied voltage at the electro-generated chlorine system in the reaction bath. Also, ozone generator was used to obtain ruthenium(III) chloride solution to increase the leaching rate. The optimum condition was observed at pH 10.0, $40^{\circ}C$ within 1 hr of reaction time that more than 88% of ruthenium(III) chloride dissolved.