• Title/Summary/Keyword: $CO_2$ extinguishing system

Search Result 24, Processing Time 0.023 seconds

Method for Preventing Asphyxiation Accidents by a CO2 Extinguishing System on a Ship (선박 내 CO2 소화설비에 의한 질식사고 방지 기법)

  • Ha, Yeon-Chul;Seo, Jung-Kwan;Hwang, Jun-Ho;Im, Kichang;Ryu, Sang-Hoon
    • Fire Science and Engineering
    • /
    • v.29 no.6
    • /
    • pp.57-64
    • /
    • 2015
  • Carbon dioxide extinguishing systems are broadly used for onshore and offshore fire accidents because of excellent performance and low cost. However, there is risk with carbon dioxide systems, which have caused many injuries and deaths by suffocation associated with industrial and marine fire protection applications. In this study, a numerical analysis was performed to predict the fire suppression characteristics of a carbon dioxide system in the compressor room of ships. A double protection safety system is suggested to prevent suffocation accidents from carbon dioxide extinguishing systems. Four scenarios were selected to study the variation of the heat release rate, maximum temperature, a $CO_2$ and $O_2$ mole fraction, and fire suppression characteristics with the carbon dioxide system. The importance of proper design is suggested for a ventilation system in the compressor room of ships.

Structural Safety Evaluation for Fixed CO2 Extinguishing Systems Under Ship Motion (선박모션에 따른 고정식 CO2소화 장치 구조안전성 평가)

  • Kim, Seung Chan;Kang, Sang Hoon;Choi, Joo Hyoung;Kim, Jeong-Hwan;Park, Young Chul
    • Transactions of the KSME C: Technology and Education
    • /
    • v.4 no.2
    • /
    • pp.75-83
    • /
    • 2016
  • Since fire is one of the most dangerous threats to the safety of the ship, from the safety device is installed on the vessel the digestive apparatus can be viewed as the most important safety device. The fire-extinguishing device to be mounted to the vessel structure affected the stability of the structure in accordance with the blue of the sea. In particular, the Rack part of the basic safety of a fixed fire extinguishing system in the absence of a $CO_2$ container. In this paper, by utilizing simulation techniques to apply the pressure data being ejected in each direction by ship motion and $CO_2$ containers Rack perform an analysis of the structural safety assessment was part of the digestive system accordingly.

대규모건축물적용 특수방재설비

  • 이성모
    • Fire Science and Engineering
    • /
    • v.10 no.4
    • /
    • pp.37-42
    • /
    • 1996
  • The "Intelligent Fire detecting and Extinguishing System" is an up-to-date fire protection system for modern high-rise buildings, international airports, enormous industrial facilities, dome stadiums such as specific areas in which the application of our local fire protection regulation could not be satisfied. The state-of-the art initiating devices communicated with sophisticated network control panels enable peoples to get reliable and powerful suppressions using water or gas, providing absolute protection. The Intelligent Water Cannon System, the Low Pressure $CO_2$ System and the MXL Networking Fire Alarm System introduced in this paper accomplish the dynamic protection for the special hazards.

  • PDF

Numerical analysis to determine fire suppression time for multiple water mist nozzles in a large fire test compartment

  • Ha, Gaghyeon;Shin, Weon Gyu;Lee, Jaiho
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1157-1166
    • /
    • 2021
  • In this study, a numerical sensitivity analysis was performed to determine the fire suppression time for a large number of water mist nozzles in a large fire compartment. Fire simulations were performed using FDS (Fire dynamics simulator) 6.5.2 under the same condition as the test scenario 5 of the International Maritime Organization (IMO) 1165 test protocol. The sensitivities of input parameters including cell size, extinguishing coefficient (EC), droplets per second (DPS), and peak heat release rate (HRR) of fuel were investigated in terms of the normalized HRR and temperature distribution in the compartment. A new method of determining the fire suppression time using FDS simulation was developed, based on the concept of the cut-off time by cut-off value (COV) of the heat release rate per unit volume (HRRPUV) and the cooling time by the HRR cooling time criteria value (CTCV). In addition, a method was developed to determine the average EC value for the simulation input, using the cooling time and cut-off time.

A Study on the Methods of Fire-Safety in Cultural Property Wooden Buildings (목조 문화재 건축물의 화재 방재를 위한 조사 연구)

  • Chang, Hyung-Soon;Cho, Won-Seok;Kim, Heung-Gee
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.10 no.4
    • /
    • pp.25-32
    • /
    • 2008
  • The prevention of disasters in cultural property is very important management and historical duties. The reason can't be measured values with monetary scale of our contemporary. Therefore, this paper was considered fire-safety as one of terrible threat-disasters about the wooden buildings. This research deal with 47 cases cultural property wooden building by whole investigation(field survey and interview) in Gangnung province. The most buildings have basic fire extinguisher; ABC powder. A few buildings are rarely installed fire extinguishing equipments; outdoor fire hydrant, heat sensor, ground sprinkler, CO2-hose-reel. But these state is very insufficient for the fire-safety in cultural property wooden buildings. Specially as particular attention in province, forest fire of regional characteristic have close relation with cultural property fire. The majority of factor against forest and building fire is to provide monitoring and security system; CCTV, Fence, Sensor, Alarm and paid guard man against incendiary. Ultimately it is necessary to construct comprehensive disaster prevention system with the organic cooperation such as National Emergency Management Agency, Cultural Heritage Administration, Forest Service, local government officials and regional citizen.

  • PDF

A Technical Description on The Safety Aspects related To Gas Suppression Fire Protection System (가스계 소화시스템관련 안전기술)

  • 이창욱
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.21-29
    • /
    • 2002
  • With regard to the personnel safety and other safety when the gas suppressants are discharged into the area where occupants exist, the short term and long term effects to the health of people are discussed mainly with the Carbon dioxide agent and Halon Replacement agents system. To gain the benefits of CO2 extinguishing systems while minimizing risk to people serious attention must be given to personnel safety in the design, installation, and maintenance of CO2 systems. Training of personnel is essential. A major factor in the use of a clean agent fire suppressant in a normally occupied area is toxicity. While all halocarbon agents are tested for long-term health hazards, the primary endpoint is acute or short-term exposure, The primary acute toxicity effects of the halocarbon agents described here are anesthesia and cardiac sensitization. For inert gases, the primary physiological concern is reduced oxygen concentration.

  • PDF

A Numerical Study on the Extinguishing Effects of CO2 in Counterflow Diffusion Flames with the Concept of Local Application System (국소방출방식 개념의 대향류 확산화염에서 CO2 소화효과에 관한 수치해석 연구)

  • Mun, Sun-Yeo;Park, Chung-Hwa;Hwang, Cheol-Hong;Oh, Chang-Bo
    • Fire Science and Engineering
    • /
    • v.26 no.4
    • /
    • pp.55-62
    • /
    • 2012
  • The suppression mechanisms of carbon dioxide ($CO_2$) as a representative fire suppression agent were revisited using a counterflow diffusion flame which could be applied the concept of a local application system. To end this, the low strain rate $CH_4$/air counterflow diffusions with $CO_2$ addition in either fuel or oxidizer stream were examined numerically using detailed-kinetic chemistry. Radiative heat loss due to radiating gas species including $CO_2$ added was considered by the optically thin model (OTM). As a result, the critical $CO_2$ volume fractions in the oxidizer stream required to extinguish the flame were in good agreement with the experimental data reported in the literature, while somewhat under-prediction was observed with $CO_2$ added in the fuel stream. The surrogate agents were adopted to estimate the quantitative contribution with changing in global strain rate ($a_g$) on the flame extinguishment among pure dilution effect, thermal effects including radiation heat loss and chemical effect due to the $CO_2$ fire suppression agent.

A Study on the Progression of Fire Control Policies in Joseon Dynasty - Regal & Administrative System, Planning Tools, Works and Facilities - (조선시대 금화시책(禁火施策)의 전개과정에 관한 연구 - 금화정책, 금화계획, 금화사업, 금화시설을 중심으로 -)

  • Kim, Sang-Hee;Lee, Kyung-Chan
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.31 no.3
    • /
    • pp.12-24
    • /
    • 2013
  • The cities of Joseon dynasty had weak structure against fire. Fires have resulted in damage on property and life. But they gave a chance to development various policies, planning tools, techniques and facilities for minimizing the damages of fire. This study aims to understand the progression of fire control policy in Joseon dynasty. Fire control policies can be divided into four categories ; fire prevention, prohibition of fire spreading, fire extinguishing and rescue system. The progression of fire control policies can be divided into three steps. In the first step, from Taejong to Moonjong, various policy, such as regal & administrative system, planning tools, fire control works & appliances have been built and executed. In the second step, from Danjong to Hyunjong, fire control work have taken the central place of fire control policy. In the third step, from Sookjong to Sunjong, development of fire control appliances have taken the central place of fire control policy.

Research on Liquefaction Characteristics of SF6 Substitute Gases

  • Yuan, Zhikang;Tu, Youping;Wang, Cong;Qin, Sichen;Chen, Geng
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2545-2552
    • /
    • 2018
  • $SF_6$ has been widely used in high voltage power equipment, such as gas insulated switchgear (GIS) and gas insulated transmission line (GIL), because of its excellent insulation and arc extinguishing performance. However, $SF_6$ faces two environmental problems: greenhouse effect and high liquefaction temperature. Therefore, to find the $SF_6$ substitute gases has become a research hotspot in recent years. In this paper, the liquefaction characteristics of $SF_6$ substitute gases were studied. Peng-Robinson equation of state with the van der Waals mixing rule (PR-vdW model) was used to calculate the dew point temperature of the binary gas mixtures, with $SF_6$, $C_3F_8$, $c-C_4F_8$, $CF_3I$ or $C_4F_7N$ as the insulating gas and $N_2$ or $CO_2$ as the buffer gas. The sequence of the dew point temperatures of the binary gas mixtures under the same pressure and composition ratio was obtained. $SF_6/N_2$ < $SF_6/CO_2$ < $C_3F_8/N_2$ < $C_3F_8/CO_2$ < $CF_3I/N_2$ < $CF_3I/CO_2$ < $c-C_4F_8/N_2$ < $C_4F_7N/N_2$ < $c-C_4F_8/CO_2$ < $C_4F_7N/CO_2$. $SF_6/N_2$ gas mixture showed the best temperature adaptability and $C_4F_7N/CO_2$ gas mixture showed the worst temperature adaptability. Furthermore, the dew point temperatures of the $SF_6$ substitute gases at different pressures and the upper limits of the insulating gas mole fraction at $-30^{\circ}C$, $-20^{\circ}C$ and $-10^{\circ}C$ were obtained. The results would supply sufficient data support for GIS/GIL operators and researchers.

A Numerical Simulation of the Effect of the Injection Angle and Velocity of the $CO_2$ Agent Nozzle on the Characteristics of $CO_2$ Concentration Distribution ($CO_2$ 소화제 노즐 분사각 및 분사속도가 $CO_2$ 농도분포특성에 미치는 영향에 관한 수치적 연구)

  • Park, Chan-Su
    • Fire Science and Engineering
    • /
    • v.20 no.2 s.62
    • /
    • pp.44-53
    • /
    • 2006
  • We have conducted a numerical simulation under two-dimensional unsteady conditions in order to analyze the effect according to the injection angle and velocity of the $CO_2$ agent nozzle which is one of the elements for the fixed type $CO_2$ fire extinguishing system installed in a ship on the characteristics of flow and $CO_2$ concentration distribution. The flow fields and concentration fields were measured and analyzed. We can found that the difference of flow patterns according to the conditions of $CO_2$ agent injection nozzle, and in all the conditions of $CO_2$ agent injection nozzle, the iso-concentration line was expanded from the region at which vortex was generated to the surroundings. We can expected that the intensity of the wall jet on the bottom floor was generated differently and the iso-concentration lines were expanded or shrunk according to the angle of $CO_2$ agent injection nozzle. In case of increasing $CO_2$ agent injection velocity maintaining the flow quantity of the $CO_2$ agent injection equally, the iso-concentration line of $CO_2$ agent on bottom floor can be formed more higher than in case of decreasing $CO_2$ agent injection velocity.