• Title/Summary/Keyword: $CO_2$ emissions management

Search Result 186, Processing Time 0.023 seconds

Role of Atmospheric Purification by Trees in Urban Ecosystem -in the Case of Yongin- (도시생태계 수목의 대기정화 역할 -용인시를 사례료-)

  • 조현길;안태원
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.29 no.3
    • /
    • pp.38-45
    • /
    • 2001
  • This study quantified annual $CO_2$, SO$_2$ and NO$_2$ uptake and annual $O_2$ production by trees in Yongin´s urban ecosystem, and explored values of urban tree plantings in atmospheric purification. Woody plant cover was only 7.7% with planting density of 1. trees/100$m^2$, and the tree-age structure was largely characterized by a young, growing tree population. Annual per capita pollutant emissions from fossil fuel consumption were 7.3t/yr for $CO_2$, 7.6kg/yr for SO$_2$, and 26.6kg/yr for NO$_{x}$. Carbon dioxide storage per unit urban area by trees was 13.1t/ha and the economic value for $CO_2$ storage was ₩6.6millions/ha. Annual atmospheric purification was 2.0t/ha/yr for $CO_2$ uptake, 2.0kg/ha/yr for SO$_2$ uptake, 4.0kg/ha/yr for NO$_2$ uptake and 1.5t/ha/yr for $O_2$ production, and the annual economic value for the atmospheric purification was ₩1.5millions/ha/yr. Urbantrees stored an amount of $CO_2$ equivalent to about 3.1% of the total annual $CO_2$ emissions, and annually offset total $CO_2$ emissions by 0.5%. Annual SO$_2$ and NO$_2$ uptake by trees equaled 0.5% of total SO$_2$ emissions and 0.3% of total NO$_{x}$ emissions, respectively. Urban trees also played an important role through producing annually 9.2 of the $O_2$ requirement for Yongin´s total population, despite relatively poor tree plantings. Future active plantings and greenspace enlargement in the study city could enhance the role of atmospheric purification by urban trees. The results from this study are expected to be useful in emphasizing environment benefits of urban trees, and in urging the continuous necessity for tree planting and management budget.get.

  • PDF

Study on the Measurement of GHG Emissions and Error Analysis in Form the MSW Incineration Plant Equipment with the Recovery Heat System (2009~2013) (폐열회수시설이 설비된 생활폐기물 소각자원화시설 온실가스 배출량 산정 시 오차분석 (2009~2013))

  • Choi, Won-Geun;Seo, Ran-Sug;Park, Seung-Chul
    • Journal of Environmental Science International
    • /
    • v.25 no.2
    • /
    • pp.239-246
    • /
    • 2016
  • This study aims to analyze region-specific trends in changing greenhouse gas emissions in incineration plants of local government where waste heat generated during incineration are reused for the recent five years (2009 to 2013). The greenhouse gas generated from the incineration plants is largely $CO_2$ with a small amount of $CH_4$ and $N_2O$. Most of the incineration plants operated by local government produce steam with waste heat generated from incineration to produce electricity or reuse it for hot water/heating and resident convenience. And steam in some industrial complexes is supplied to companies who require it for obtaining resources for local government or incineration plants. All incineration plants, research targets of this study, are using LNG or diesel fuel as auxiliary fuel for incinerating wastes and some of the facilities are using LFG(Landfill Gas). The calculation of greenhouse gas generated during waste incineration was according to the Local Government's Greenhouse Emissions Calculation Guideline. As a result of calculation, the total amount of greenhouse gas released from all incineration plants for five years was about $3,174,000tCO_2eq$. To look at it by year, the biggest amount was about $877,000tCO_2eq$ in 2013. To look at it by region, Gyeonggido showed the biggest amount (about $163,000tCO_2eq$ annually) and the greenhouse gas emissions per capita was the highest in Ulsan Metropolitan City(about $154kCO_2eq$ annually). As a result of greenhouse gas emissions calculation, some incineration plants showed more emissions by heat recovery than by incineration, which rather reduced the total amount of greenhouse gas emissions. For more accurate calculation of greenhouse gas emissions in the future, input data management system needs to be improved.

A Guideline for Construction Management Plan Based on the Characteristics of $CO_2$ Emissions: A Case Study for a High-Rise Residential Building Project ($CO_2$ 배출 특성을 고려한 건설폐기물 관리방안 수립기준: 고층 주거건물 건설 프로젝트를 대상으로 한 사례조사)

  • Kim, Jee-Hye;Shin, Dong-Woo;Cha, Hee-Sung
    • Korean Journal of Construction Engineering and Management
    • /
    • v.8 no.6
    • /
    • pp.150-158
    • /
    • 2007
  • As the amount of $CO_2$ emission in Korea is ranked 9th and the increasing rate of $CO_2$ emissions highest in the world, it is strongly necessary to devise methods to decrease the amount of $CO_2$ in each industry as the basis of establishing environmentally sustainable production system. This paper aims to identify the characteristics of $CO_2$ emissions from construction wastes throughout the simplified LCA (Life Cycle Assessment) and suggest the strategic guideline for the construction waste management plan to decrease $CO_2$. As a result of LCA on the case of a high-rise residential building project, total sum of $CO_2$ emission generated from construction wastes appeared as 6,818,123kg-$CO_2$ and $CO_2$ emission per unit floor area as 21.01kg-$CO_2/{\beta}{\ge}$. The principal waste materials generating more than 95% of $CO_2$ are materials such as reinforcing bar, temporary materials, cement, ready-mixed-concrete, concrete products, and tile, which have relatively high unit emission rate of $CO_2$ in the process of production. Besides, more than 92% of $CO_2$ was generated from the activities such as structure work, plaster work, temporary work, and tile and stone work, which are generally executed in the early phase of the whole construction period. Reflecting these results, the guideline for the construction waste management plan was recommended. If the waste management plan is established considering the guideline suggested, there would be high potential to decrease the amount of $CO_2$ generated from construction wastes.

Life cycle greenhouse-gas emissions from urban area with low impact development (LID)

  • Kim, Dongwook;Park, Taehyung;Hyun, Kyounghak;Lee, Woojin
    • Advances in environmental research
    • /
    • v.2 no.4
    • /
    • pp.279-290
    • /
    • 2013
  • In this study, a comprehensive model developed to estimate greenhouse gas (GHG) emissions from urban area with low impact development (LID) and its integrated management practices (IMPs). The model was applied to the actual urban area in Asan Tangjeong district (ATD) as a case study. A rainwater tank (1200 ton) among various LID IMPs generated the highest amount of GHG emissions ($3.77{\times}10^5kgCO_2eq$) and led to the utmost reducing effect ($1.49{\times}10^3kgCO_2eq/year$). In the urban area with LID IMPs, annually $1.95{\times}104kgCO_2eq$ of avoided GHG emissions were generated by a reducing effect (e.g., tap water substitution and vegetation $CO_2$ absorption) for a payback period of 162 years. A sensitivity analysis was carried out to quantitatively evaluate the significance of the factors on the overall GHG emissions in ATD, and suggested to plant alternative vegetation on LID IMPs.

Development of Productivity-based Estimating Tool for Fuel Use and Emissions from Earthwork Construction Activities

  • Hajji, Apif M.;Lewis, Michael Phil
    • Journal of Construction Engineering and Project Management
    • /
    • v.3 no.2
    • /
    • pp.58-65
    • /
    • 2013
  • Earthwork activities are typically performed by heavy duty diesel (HDD) construction equipment that consumes large quantities of diesel fuel use and emits large quantities of pollutants, including nitrogen oxides (NOx), particulate matters (PM), hydrocarbon (HC), carbon monoxide (CO), and carbon dioxide ($CO_2$). This paper presents the framework for a model that can be used to estimate the production rate, activity duration, total fuel use, and total pollutants emissions for earthwork activities. A case study and sensitivity analysis for an excavator performing excavations are presented. The tool is developed by combining the multiple linear regressions (MLR) approach for modeling the productivity with the EPA's NONROAD model. The excavator data from RSMeans Heavy Construction Data were selected to build the productivity model, and emission factors of all type of pollutants from NONROAD model were used to estimate the total fuel use and emissions. The MLR model for the productivity rate can explain 92% of the variability in the data. Based on the model, the fuel use and emissions of excavator increase as the trench depth increase, but as the bucket size increase, the fuel use and emissions decrease.

Estimation of Carbon Emissions and Energy Self-Sufficiency in Sewage Treatment plant's Improvement by using Life Cycle Management Tool (LCM 기법을 이용한 하수처리장 개선에 따른 탄소배출량 및 에너지 자립율 평가)

  • Moon, Jin-Young;Park, Ji-Hyoung;Hwang, Yong-Woo;Park, Kwang-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.2
    • /
    • pp.223-232
    • /
    • 2013
  • In this study, carbon emissions and energy consumption were evaluated to establish a design strategy which has low energy consumption and carbon emission production, by using life cycle energy (LCE) and life cycle $CO_2(LCCO_2)$ calculation methods in life cycle management(LCM) tools. After improvement design projects, the energy consumption and $CO_2$ emission were calculated and compared in three sewage treatment plants (STPs), which are A STP, B STP, and C STP. The reduction of carbon emissions was 28,020.1 ton $CO_{2-}e/yr$, 37,399.6 ton $CO_{2-}e/yr$ and 8,788.3 ton $CO_{2-}e/yr$, respectively. Production of energy was 792 TOE/yr, 1,235 TOE/yr and 1,023 TOE/yr, respectively. As a result, the estimation of energy and energy self-sufficiency was 5.1 %, 14.5 % and 23.5 %, respectively. The result of this study shows the LCM can be contributed to establish strategy for energy and carbon emission reduction in sewage treatment plants.

Is nuclear energy a better alternative for mitigating CO2 emissions in BRICS countries? An empirical analysis

  • Hassan, Syed Tauseef;Danish, Danish;khan, Salah-Ud-Din;Baloch, Muhammad Awais;Tarar, Zahid Hassan
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2969-2974
    • /
    • 2020
  • Looking at the recent studies, nuclear energy and carbon dioxide (CO2) emissions nexus shows inconclusive result. To further explain nuclear energy-pollution nexuses this study is an attempt to analyze the impact of nuclear energy on pollution reduction for BRICS countries covering data for the period from 1993 to 2017. This study conducts advanced panel techniques such as Continuously-Updated Fully-Modified (CUP-FM) and Continuously-Updated Bias-Corrected (CUP-BC) for long run estimation. Our results support the notion that nuclear energy reduce CO2 emissions. Also, renewable energy corrects environmental pollution in BRICS countries. The magnitude of the coefficient of nuclear energy is less as compared to renewable energy, implying that nuclear is less effective in reducing environmental pollution. The findings offer significant policy understandings and suggestions not only for BRICS economies but for developing countries as well in designing suitable nuclear energy-growth-carbon policies.

Characteristics of Greenhouse Gas Emissions from Charcoal Kiln (숯가마에서 발생하는 온실가스 배출 특성)

  • Lee, Seul-Ki;Jeon, Eui-Chan;Park, Seong-Kyu;Choi, Sang-Jin
    • Journal of Climate Change Research
    • /
    • v.4 no.2
    • /
    • pp.115-126
    • /
    • 2013
  • Recently Korea considers the source of biomass burning emissions reflecting national characteristic, so that includes the inventory of emission source but preceding research is rarely implemented in Korea. Therefore, a study on characteristics of greenhouse gas emissions from biomass burning is necessary and it also makes the source management effectively when the climate-atmospheric management system takes effect. In this study, using the manufactured charcoal kiln and the number of experiment was three times to get a reliable experiment result. The sampling time was decided by changing degree in charcoal kiln and charcoal manufacturing process. The results of calculation greenhouse gas emission factor from charcoal kiln were $668g\;CO_2/kg$, $20g\;CH_4/kg$, $0.01g\;N_2O/kg$. Using the emission factor developed in this study, estimate the emissions from charcoal kiln in Korea. The results of calculation were $46,040ton\;CO_2/yr$, $1,378ton\;CH_4/yr$, $0.69ton\;N_2O/yr$ and greenhouse gas emissions applying GWP are as follows. $CH_4$ emissions was $28,947ton\;CO_2eq./yr$, $N_2O$ emissions was $214ton\;CO_2eq./yr$. As a results, Gross emissions of charcoal kiln in Korea was $75,201ton\;CO_2eq./yr$, but the oak used in this study is included to the biomass so emissions of $CO_2$ are excluded. Therefore the net emissions of charcoal kiln in Korea was $29,161ton\;CO_2eq./yr$.

Reduction of Carbon-Dioxide Emission Applying Carbon Capture and Storage(CCS) Technology to Power Generation and Industry Sectors in Korea (국내 전력 발전 및 산업 부문에서 탄소 포집 및 저장(CCS) 기술을 이용한 이산화탄소 배출 저감)

  • Wee, Jung-Ho;Kim, Jeong-In;Song, In-Sung;Song, Bo-Yun;Choi, Kyoung-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.9
    • /
    • pp.961-972
    • /
    • 2008
  • In 2004, total emissions of Greenhouse Gases(GHGs) in Korea was estimated to be about 590 million metric tons, which is the world's 10th largest emissions. Considering the much amount of nation's GHG emissions and growing nation's position in the world, GHG emissions in Korea should be reduced in near future. The CO$_2$ emissions from two sub-sections of energy sector in Korea, such as thermal power plant and industry section(including manufacturing and construction industries), was about 300 million metric tons in 2004 and this is 53.3% of total GHG emissions in Korea. So, the mitigation of CO$_2$ emissions in these two section is more important and more effective to reduce the nation's total GHGs than any other fields. In addition, these two section have high potential to qualitatively and effectively apply the CCS(Carbon Capture and Storage) technologies due to the nature of their process. There are several CCS technologies applied to these two section. In short term, the chemical absorption technology using amine as a absorbent could be the most effectively used. In middle or long term, pre-combustion technology equipped with ATR(Autothermal reforming), or MSR-$H_2$(Methane steam reformer with hydrogen separation membrane reactor) unit and oxyfuel combustion such as SOFC+GT(Solid oxide fuel cell-Gas turbine) process would be the promising technologies to reduce the CO$_2$ emissions in two areas. It is expected that these advanced CCS technologies can reduce the CO$_2$ avoidance cost to $US 8.5-43.5/tCO$_2$. Using the CCS technologies, if the CO$_2$ emissions from two sub-sections of energy sector could be reduced to even 10% of total emissions, the amount of 30 million metric tons of CO$_2$ could be mitigated.

Does CO2 and Its Possible Determinants are Playing Their Role in the Environmental Degradation in Turkey. Environment Kuznets Curve Does Exist in Turkey.

  • RAHMAN, Zia Ur
    • Journal of Wellbeing Management and Applied Psychology
    • /
    • v.2 no.2
    • /
    • pp.19-37
    • /
    • 2019
  • Over the last few decades, the atmospheric carbon dioxide emission has been amplified to a great extent in Turkey. This amplification may cause global warming, climate change and environmental degradation in Turkey. Consequently, ecological condition and human life may suffer in the near future from these indicated threats. Therefore, an attempt was made to test the relationship among a number of expected factors and carbon dioxide emissions in the case of Turkey. The study covers the time series data over the period of 1970-2017. We employed the modern econometric techniques such as Johansen co-integration, ARDL bound testing approach and the block exogeneity. The results of the Johansen co-integration test show that there is a significant long-run relationship between carbon dioxide emissions and expected factors. The long-run elasticities of the ARDL model show that a 1% increase in the GDP per capita, electric consumption, fiscal development and trade openness will increase carbon dioxide emissions by 0.14, 0.52, 0.09 and 0.20% respectively. Further, our findings reveal that the environmental Kuznets curve (EKC) hypothesis and inverted U-shaped relationship between carbon dioxide emission and economic growth prevails. Therefore, the EKC hypothesis is valid and prevailing in the Turkish economy. The diagnostic test results show that the parameters of the ARDL model are credible, sTable and reliable in the current form. Finally, Block exogeneity analysis displays that all the expected factors are contributing significantly to carbon dioxide emissions in the Turkish economy.