• 제목/요약/키워드: $CO_2$ emission

검색결과 2,505건 처리시간 0.039초

Development of a BIM-based Carbon Dioxide Emission Estimation System -Focus on an Apartment in Korea-

  • Lee, Yong-Ju;Jun, Han-Jong
    • Architectural research
    • /
    • 제18권4호
    • /
    • pp.145-149
    • /
    • 2016
  • Recently, a goal was set globally to reduce the Carbon Dioxide ($CO_2$) emission at national levels by 30 % in comparison to the Business As Usual (BAU) pursuant to the United Nations Framework Convention on Climate Change. As construction industry accounts for as high as 40 % of the $CO_2$ emission by the entire industrial sector in Korea, efforts toward reducing emissions from the construction industry are essential. Buildings are mainly responsible for $CO_2$ emissions, and, to reduce the $CO_2$ emitted from the buildings, a fast and accurate calculation method is required to be introduced in the architectural design phase. If the standardized data based on Building Information Modelling (BIM) is utilized, $CO_2$ emissions can be calculated quickly and accurately during the design phase. However, it is difficult for the designers who lack the knowledge regarding $CO_2$ emissions to reduce and manage such emission during the planning and design phases of buildings by estimating the quantities of various materials and the corresponding $CO_2$ emissions. Accordingly, the objective of this study is to develop a BIM-based $CO_2$ emission estimation system for a rapid and objective analysis and verification of $CO_2$ emissions.

Is Economic Globalization Destructive to Air Quality? Empirical Evidence from China

  • GURBUZ, Eren Can
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제9권10호
    • /
    • pp.15-27
    • /
    • 2022
  • Recently, as carbon dioxide (CO2) emissions have increased overall and contributed to air pollution, and awareness of environmental degradation has grown. This study examines the impacts and causalities of economic globalization, economic growth, energy consumption, and capital formation on CO2 emissions in China over the period 1971-2014. The vector error correction model (VECM) and Granger causality test on time-series data are employed to observe the interactions between CO2 emission, economic globalization, and various economic factors, including economic growth, energy consumption, and capital formation, since China's early stage of globalization. The empirical results indicate the existence of bidirectional causalities from economic growth, gross capital formation, economic globalization, and CO2 emission to energy consumption, and bidirectional casualty from energy consumption to CO2 emission relationships in the short run. The findings of this study suggest that indirect bidirectional causalities from economic growth, economic globalization, and capital formation to CO2 emission through energy consumption are observed. Moreover, economic globalization accelerates CO2 emission in the short run but decreases it in the long run. To reduce CO2 emissions, and to ensure sustainable economic growth and economic globalization progress, some crucial energy-saving and energy-efficiency policies, regulatory rules, and laws are recommended.

생활폐기물 특성 분석 및 소각시설의 CO2 배출량 평가 (Property Analysis of Municipal Solid Waste and Estimation of CO2 Emissions from Waste Incinerators)

  • 김병순;김신도;김창환;이태정
    • 한국대기환경학회지
    • /
    • 제26권6호
    • /
    • pp.657-665
    • /
    • 2010
  • Carbon dioxide ($CO_2$) is known to be a major greenhouse gas partially emitted from waste combustion facilities. According to the greenhouse gas emission inventory in Korea, the quantity of the gas emitted from waste sector in 2005 represents approximately 2.5 percent of all domestic greenhouse gas emission. Currently, the emission rate of greenhouse gas from the waste sector is relatively constant partly because of both the reduced waste disposal in landfills and the increased amounts of waste materials for recycling. However, the greenhouse gas emission rate in waste sectors is anticipated to continually increase, mainly due to increased incineration of solid waste. The objective of this study was to analyze the property of Municipal Solid Waste (MSW) and estimate $CO_2$ emissions from domestic MSW incineration facilities. The $CO_2$ emission rates obtained from the facilities were surveyed, along with other two methods, including Tier 2a based on 2006 IPCC Guideline default emission factor and Tier 3 based on facility specific value. The $CO_2$ emission rates were calculated by using $CO_2$ concentrations and gas flows measured from the stacks. Other parameters such as waste composition, dry matter content, carbon content, oxidation coefficient of waste were included for the calculation. The $CO_2$ average emission rate by the Tier 2a was 34,545 ton/y, while Tier 3 was 31,066 ton/y. Based on this study, we conclude that Tier 2a was overestimated by 11.2 percent for the $CO_2$ emission observed by Tier 3. Further study is still needed to determine accurate $CO_2$ emission rates from municipal solid waste incineration facilities and other various combustion facilities by obtaining country-specific emission factor, rather than relying on IPCC default emission factor.

산업연관표를 이용한 지붕방수공법별 $CO_2$ 배출량 산정 (The Estimation of $CO_2$ Emission Cost on Roof Waterproofing Types Using Input-Output Table)

  • 정영철;박규태;이병윤;김광희
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2010년도 춘계 학술논문 발표대회 1부
    • /
    • pp.243-246
    • /
    • 2010
  • Recently, global warming problem is a major issue in international community. The carbon dioxide ($CO_2$) emissions in the construction industry is one of the main factors causing a global warming problem. Accordingly, various researches on $CO_2$ emissions caused by the construction industry is needed and construction methods which is low $CO_2$ emissions should be developed. In this study, $CO_2$emission cost is compared with roof waterproofing types in construction phase. As a result, the $CO_2$ emission costs of asphalt waterproofing is the highest. This research is to provide basic information for selecting appropriate construction methods in aspect of low $CO_2$ emission cost.

  • PDF

이산화탄소 배출량을 고려한 토공 장비조합의 선정 (Selecting of Earth-work Equipment Combination Considered CO2 Emission)

  • 김병수
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 춘계학술대회 논문집
    • /
    • pp.1750-1756
    • /
    • 2011
  • After Kyoto Protocol was adopted for green gas reduction, each nations are stepping up efforts to reduce $CO_2$ of a typical green gas. Construction industry also is trying $CO_2$ reduction with the techniques of two types which are software and hardware techniques. The software technique are Passive Design considered green gas emission and the environment impact assessment by LCA. The hardware techniques are adjustment of equipment system and development of eco- friendly material. But, it is nonexistent that a study related to $CO_2$ emission considered detail process in construction industry. This study analyzed the relativeness of equipment combination and $CO_2$ emission by calculate $CO_2$ emission follow to equipment combination on earth-work which is the process emitted most $CO_2$ among railway bedding construction.

  • PDF

다중 회귀 분석을 이용한 친환경 건축물 인증제도가 공동주택 CO2 발생량에 미치는 영향 분석 (Impact of Green Building Rating System on an Apartment Housing CO2 Emission using Multiple Regression Analysis)

  • 정정희;류혁준;이종훈;김주형;김재준
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2013년도 춘계 학술논문 발표대회
    • /
    • pp.111-112
    • /
    • 2013
  • Architecture has a large influence in the environment and human health. Therefore eco-friendly concept and sustainable development are important in Architectural field. This study aims to analyze impact of green building rating system on an apartment housing CO2 emission using multiple regression analysis. But in this result, green building rating system has no effect on CO2 emission. So, future study is required to analyze factors of green building rating system on the CO2 emission.

  • PDF

전과정평과를 통한 유기농자재의 탄소배출량 산정연구 -유기질비료를 중심으로- (A Study on the Amount of Carbon Emission of Organic Materials through Life-Cycle Assessment (LCA))

  • 윤성이;권혁준
    • 한국유기농업학회지
    • /
    • 제19권1호
    • /
    • pp.23-38
    • /
    • 2011
  • ● The current world is suffering abnormal climate caused by global warming. The main cause of global warming is greenhouse gas such as carbon dioxide. The carbon labeling system and carbon traceability system being pushed ahead in the agricultural sector is the policy for responding to climate change to reduce greenhouse gas emissions. To make this policy more effective and enhanced, the amount of carbon emissions should be calculated based on the kind of crops or the various businesses in the agricultural sector. Therefore, in order to estimate the accurate amount of carbon emissions, it is necessary to establish carbon dioxide emission intensity of various agricultural materials added onto the agriculture, and to calculate the amount of carbon dioxide emission for each crop according to agricultural production. The purpose of this study is to establish the amount of emission, emission per agricultural materials, of agricultural materials being added for crop production as a basic step, and emission intensity which can be used in the future market in order to estimate accurate amount of carbon emission in all the policies being promoted in the agricultural sector. Therefore, in this study, in order to build LCI D/B about organic fertilizers among many organic materials added onto the organic agriculture sector, one leading company in organic fertilizer production was selected and LCA was conducted for this leading company. We had to build the intensity and integrated average concept of intensity upon the two cases once production farmers for their own consumption and farms besides organic fertilizer company were categorized even if it's little amount. But in this study, individually produced organic fertilizers were excluded. Calculated results are following. Carbon emission of mixed expeller cake fertilizer in organic fertilizer was 1,106,966.89kg-$CO^2$ and emission intensity was 0.01606kg-$CO^2$, respectively. Total emission of mixed organic fertilizers was 241,523.2kg-$CO^2$ and emission intensity was 0.01705kg-$CO^2$. And total emission of organic compound fertilizers was 94,592.66kg-$CO^2$ and emission intensity was 0.01769kg-$CO^2$, respectively.

철강 산업의 산업공정부문 CO2 실측 배출계수 산정에 관한 연구 (An Estimation of Plant Specific Emission Factors for CO2 in Iron and Steel Industry)

  • 엄윤성;홍지형;김정수;김대곤;이수빈;송형도;이성호
    • 한국대기환경학회지
    • /
    • 제23권1호
    • /
    • pp.50-63
    • /
    • 2007
  • The development of domestic plant specific emission factors is very important to estimate reliable national emissions management. This study, for the reason, was carried out to obtain advances emission factor for Carbon Dioxide ($CO_2$) by source-specific emission tests from the iron and steel industry sector which is well known as one of the major sources of greenhouse gases ($CO_2$). Emission factors estimated in this study were compared with those of IPCC for evaluation and they were found to be of similar level in the case of $CO_2$. There was no good information available on $CO_2$ plant specific emission factors from the iron and steel industry in Korea so far. The major emission sources of $CO_2$ examined from the iron and steel manufacturing precesses were a hot blast stove, coke oven, sintering furnace, electric arc furnace, heating furnace, and so on. In this study, the concentration of $CO_2$ from the hot blast stove process was the highest among all processes. The $CO_2$ emission factors for a ton of Steel and Iron products (using B-C oil) were estimated to be 0.315 $CO_2$ tonne (by Tier 3 method) and 4.89 $CO_2$ tonne. In addition, emission factor of $CO_2$ for heating furnace process was the highest among all process. Emission factors estimated in this study were compared with those of IPCC for evaluation and they were found to be of similar level in the case of $CO_2$.

An investigation and forecast on CO2 emission of China: Case studies of Beijing and Tianjin

  • Wen, Lei;Ma, Zeyang;Li, Yue;Li, Qiao
    • Environmental Engineering Research
    • /
    • 제22권4호
    • /
    • pp.407-416
    • /
    • 2017
  • $CO_2$ emission is increasingly focused by public. Beijing and Tianjin are conceived to be a new economic point of growth in China. However, both of them are suffering serious environmental stress. In order to seek for the effect of socioeconomic factors on the $CO_2$ emission of this region, a novel methodology -symbolic regression- is adopted to investigate the relationship between $CO_2$ emission and influential factors of Beijing and Tianjin. Based on this method, $CO_2$ emission models of Beijing and Tianjin are built respectively. The models results manifested that Beijing and Tianjin own different $CO_2$ emission indicators. The RMSE of models in Beijing and Tianjin are 255.39 and 603.99, respectively. Further analysis on indicators and forecast trend shows that $CO_2$ emission of Beijing expresses an inverted-U shaped curve, whilst Tianjin owns a monotonically increasing trend. From analytical results, it could be argued that the diversity rooted in different development orientation and the mixture of different natural and industrial environment. This research further expands the investigation on $CO_2$ emission of Beijing and Tianjin region, and can be used for reference in the study of carbon emissions in similar regions. Based on the investigation, several policy suggestions are presented.

연료와 CO2 농도분석을 이용한 아역청탄 화력발전소의 온실가스 배출계수 개발 (Development of CO2 Emission Factor by Fuel and CO2 analysis at Sub-bituminous Fired Power Plant)

  • 전의찬;사재환
    • 한국환경보건학회지
    • /
    • 제36권2호
    • /
    • pp.128-135
    • /
    • 2010
  • The main purpose of this study was to develop the greenhouse gas emission factor for power plant using sub-bituminous coal. In Korea, Fired power plant are a major source of greenhouse gases within the fossil fuel combustion sectors, thus the development of emission factors is necessary to understand the characteristics of the national specific greenhouse gas emission and to develop nation specific emission factors. These emission factors were derived from the $CO_2$ concentrations measurement from stack and fuel analysis of sub-bituminous coal. Caloric value of sub-bituminous coal used in the power plants were 5,264 (as received basis), 5,936 (air-dried basis) and 6,575 kcal/kg (dry basis). The C emission factors by fuel analysis and $CO_2$ concentration measurement was estimated to be 26.7(${\pm}0.9$), 26.3(${\pm}2.8$)tC/MJ, respectively. Our estimates of C emission factors were comparable with IPCC default value.