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1. Introduction

The public concern is increasingly focused on the climate change. 
It has reached a consensus that climate change is primarily driven 
by the greenhouse gases (GHG) emission in the atmosphere. CO2 
is perceived to be the most notable GHG gas associated with human 
activities. 

Beijing and Tianjin are perceived to be an important economic 
point of growth in north China. From 1995 to 2015, Gross Domestic 
Product (GDP) of Beijing and Tianjin reached an average 14.95% 
growth annually, 69.52% of population growth and 84.90% of aver-
age urbanization level. On the contrary, the fast development brings 
a huge amount of CO2 emission. During this period, CO2 emission 
in Beijing and Tianjin almost doubled, from 183.19 million tons 
in 1995 to 332.34 million tons in 2015. It could be argued that 
Beijing and Tianjin are suffering serious environmental stress. 

Therefore, it is imperative for Beijing and Tianjin to seek for 
the effect of economic growth on the environment so as to balance 
environmental protection against the development process. Thus, 
this study intends to explore the link between CO2 emissions and 

certain indicators in the case of Beijing and Tianjin.
In recent years, many experts are committed to inquiring into 

CO2 emission and its influential factors. The research could be 
classified into two groups: Decomposition methods and regression 
methods.

On one hand, decomposition methods are commonly applied 
in studying CO2 emissions. IPAT, ImPAT, STRIPAT and LMDI 
are commonly applied among decomposition models.

The IPAT model is a method focusing the impacts of human 
activities, including population growth, economic growth and tech-
nological progress, on pollutant [1]. After its initial presentation, 
the IPAT identity has been regarded as an easily understandable, 
widely utilized framework for analyzing the driving forces of envi-
ronmental change [2]. Waggoner and Ausubel further disaggregated 
a fourth variable C (the intensity of energy use) into per unit of 
GDP (A) and impact per unit of consumption (T), thus created 
ImPACT model [3]. IPAT model allows to explicitly identify the 
relationship between the driving forces and environmental impacts, 
but it is also been criticized because IPAT model assumes a propor-
tional relationship between environmental indicators and influen-
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tial factors [4]. In addition, although ImPACT advanced the IPAT 
model in allowing room for diagnostic analysis, both were equations 
with fixed factors assuming proportionality between the key deter-
minant factors, which limit further application of the models. The 
STIRPAT model is one of the most popular measures used in studies 
on CO2 emissions. It was proposed by Dietz and Rosa [5-7]. It 
gives a chance to introduce more variables during analysis and 
it is much more flexible to test the impacts of each factor on environ-
mental pressures. 

Various researches on the CO2 emission in China using decom-
position models are conducted. For instance, Hubacek et al [2] 
conducted an IPAT analysis for China and made the conclusion 
that increase of affluence has been the main driving force for China’s 
CO2 emissions since the late 1970s. Ang [8] and Wang [9] came 
to the conclusion by using the LMDI method that economic growth 
is a leading cause of carbon emissions and energy intensity is 
seen as essential effect if China’s carbon emissions are looked for-
ward to being reduced over the long term. 

On the other hand, regression methods are also employed to 
investigate CO2 emission and influential factors.

Regression methods are widely applied in various fields. From 
macroscopic point of view, regression methods have been success-
fully applied in various atmosphere sciences [10-15]. On further 
research on atmosphere sciences, one of the commonly applied 
regression methods on CO2 emission is Environmental Kuznets 
curves (EKC). EKC is conceived as an inverted U-shaped curve 
model of the connection among energy consumption, economic 
growth, and the environment as well [16]. The EKC hypothesis 
reveals that environmental pollution will increase until reaching 
a peak and then will start declining over time with economic growth 
[17]. EKC is commonly adopted to investigate the relationship be-
tween environmental degradation and economic growth [18, 19].

In addition, on application of regression methods, various re-
searches, which aim at exploring the relationship between CO2 
emission and socioeconomic factors, have been conducted [20-24]. 
Based on historical data, these researches quantitatively analyzed 
the link between CO2 emission and socioeconomic factors from 
national perspective, and guaranteed satisfactory results. What’s 
more, these researches further expand the application of CO2 emis-
sion, providing information on relative policy implications. 

In artificial intelligence, Genetic Programming (GP) is conceived 
to be an effective methodology to deal with optimization problems. 
This algorithm is first proposed by Koza [25]. Essentially, GP is 
a set of instructions and a fitness function to measure how well 
a computer has performed a task. The process which targets at 
producing a computer program linked to a certain data set is also 
called symbolic regression [26]. Symbolic regression is a common 
application of genetic programming. Unlike traditional linear or 
nonlinear regression methods that fit parameters to an equation 
of a given form, symbolic regression searches both the parameters 
and the form of equations simultaneously [27]. Without assumed 
functional forms, symbolic regression method can get insight about 
the generating systems hidden in various data [28]. It could be 
argued that symbolic regression using genetic programming is an 
ideal algorithm for automatically determining an otherwise un-
known functional relationship between a set of inputs and outputs.

The commonly applied models are widely applied and frequently 

proved by former researchers. However, as for Beijing and Tianjin, 
the traditional models usually adopt fixed models and parameters, 
which limited further application and investigation of the CO2 
emission research. What’s more, it is limited to select parameters 
by personal experience from the complex socioeconomic system. 
Sometimes, the drawbacks of traditional models could induce con-
tradiction in results. This phenomenon is obviously expressed in 
the research based on the EKC model. As Lau et al. [29] stated 
that there exists an EKC model in Malaysia during 1970-2008, 
whilst Azlina et al. [30] argued that there was no EKC model in 
Malaysia from 1975 to 2011. 

In this paper, symbolic regression method is adopted to further 
investigate the relationship between CO2 emissions and its influen-
tial factors of Beijing and Tianjin. The application of symbolic 
regression in this paper wouldn’t adopt fixed parameters and equa-
tions like traditional methods, but automatically discover the hidden 
relationship between CO2 emission and socioeconomic factors of 
Beijing and Tianjin. This method aims at avoiding the drawbacks 
of traditional models and attempts to explore new equations for 
CO2 emissions, and make forecast and analysis based on the dis-
covered models. 

2. Methods

2.1. Methodology

The advantage of symbolic regression lies in its ability to automati-
cally discover the hidden functional relationship without domain 
knowledge. Symbolic regression would determine the parameters 
and structures simultaneously other than traditional regression 
method, which must be predefined a certain function form, such 
as liner, quadratic equation, natural logarithm and so on. Due to 
the characteristics of symbolic regression, it is accepted as the 
“Robot scientist” for automated knowledge discovery [31]. It can 
be argued that the symbolic regression is successfully applied as 
a novel automatic discovery method in modeling and optimization 
problems. Schmidt and Lipson [27] conducted symbolic regression 
and discovered Hamiltonians, Lagrangians, and other laws of geo-
metric and momentum conservation. Yang, et al. [17] applied sym-
bolic regression and discovered four models, including the inverted 
N-shaped, M-shaped, inverted U-shaped and monotonically in-
creasing without domain experts’ intervention, and the newly dis-
covered M-shaped model has received little attention in previous 
studies but exhibits promising performance. Bahrami [32] con-
ducted GP as a novel method for modeling the Recovery Factor 
(RF) and the Net Present Value (NPV) in Surfactant–Polymer (SP) 
flooding, and achieved satisfactory optimization results. Palancz 
et al. [33] conducted symbolic regression to treat the problem of 
geoid correction based on GPS ellipsoidal height measurements, 
the result proposed SR method could reduce the average error 
to a level of 1-2 cm. 

Symbolic regression, based on genetic programming, is applied 
in this paper as an evolutionary function discovery method. It 
is intended that the relationship between certain factors and CO2 
emission is automatically discovered by the symbolic regression. 
Based on the result of this method, the validation of the result 
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Fig. 1. Flowchart of genetic programming.

is conducted. Further exploration of Beijing and Tianjin is con-
ducted to investigate the relationship between CO2 emission and 
certain factors, which aims to check if there exists a general model 
which performs satisfactory result.

The flow chart of genetic programming is shown in Fig. 1. The 
function forms in genetic programming are conducted with the 
syntax tree. Fig. 2(a) illustrates an example of syntax tree. Two 
types of nodes in a syntax tree are included: Functional nodes 
and terminal nodes. Functional nodes include functional symbols 
like numerical operators (+, -, ×, /, sin, cos, etc.), logistical operators, 
etc. Terminal nodes include terminal symbols such as input varia-
bles and constants.

Three basic genetic operations are adopted to implement sym-
bolic regression, which are reproduction, crossover and mutation. 
Reproduction operation could keep the better individuals survive 
into the next generation; crossover operation, equivalent to the 
sexual reproduction procedure in nature, combines two individuals 
(syntax tree) and creates two new individuals; mutation operation 
mutates a select node or part of syntax tree, which could play 
an important role in increasing the individual diversity and avoiding 
local optimal solution. The detailed description of these operations 
is shown in Fig. 2(b). 

a

b

Fig. 2. Detailed illustrations of syntax tree and genetic operations.

Generally speaking, it follows three major steps to conduct sym-
bolic regression.

(1) Parameters initialization. Primitive functions and variables 
used for exploring the hidden relationships should be pre-defined 
before conducting the symbolic regression.

(2) Modeling operation. This step includes modeling the variables 
and parameters. The application of genetic programming, including 
the genetic operations such as reproduction, crossover and muta-
tion, is also included. 

(3) Fitness evaluation. The direction of genetic operation was 
guided by the fitness evaluation procedure. Individuals with better 
performance will have more chance to survive and individuals 
with poor performance will gradually diminish. In addition, fitness 
evaluation could play an important role in evaluation of terminal 
criterion.

As for genetic programming, the promising individuals will have 
more chance to survive to the next generation, whilst the poor-per-
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formance individuals will gradually diminish. Complexity and fit-
ness are conflicting features leading to a multi objective problem 
[34]. According to the Occam’s Razor, if there are two models 
with the same accuracy, the model with less complexity is preferred. 
In this paper, two objectives were used to evaluate the models. 
One is the fitness, which is considered to evaluate if this model 
fits the data well, the other is the complexity, which is calculated 
by the node count of the tree. A Pareto front could be built based 
on the fitness and complexity of the models. It can be used to 
detect the best solutions among thousands of millions of candidates. 
In this paper, the mean absolute error (MAE) was used to measure 
the fitness.

In summary, two principles guide our method:
(1) The important factors and functions will frequently emerge; 
(2) Models on the Pareto front will be selected.

2.2. Data

In order to conduct the symbolic regression, the panel data 
form of Beijing and Tianjin is selected. The data covered 21 
y from 1995 to 2015. 19 y data from 1995 to 2013 is used 
as the training data, the data of year 2014 and 2015 is used 
as validation data. The original data was collected from China 
Energy Statistical Yearbook and the Statistical Yearbook of 
Beijing and Tianjin. 

Taking into account the factors applied in former researchers 
[35-37], the driving factors of energy requirements and carbon 
emission can reduce to economy growth, industrial structure, 
population and urbanization, technological improvement and 

innovation, energy structure, living standard improvement and 
energy-saving policies. Living standard improvement factor and 
energy-saving policies factor are not involved in modeling for 
the purpose of difficulty in quantification. From the macro-
scopic perspective, taking into account the efficiency while 
conducting the symbolic regression, the variables are defined 
as follows in Table 1 to investigate the influence on the CO2 
emission.

The carbon dioxide emission data is calculated via the 
algorithm produced by IPCC. This strategy is a top-down 
approach, using a country’s energy supply data to calculate 
the emissions of CO2 from combustion of mainly fossil fuels 
[38]. Following the IPCC guidelines and former research [39], 
the CO2 emission from energy consumption is calculated 
as follows:


 




 ×× × ×
(1)

Where 
 is the total consumption of CO2,   is the amount 

of fuel  consumption,  is the net calorific value of fuel 
,   is the carbon content of fuel ,   is the carbon oxidation 
factor of fuel . In this paper, the carbon oxidation factor 
was selected default value 1. Fuels considered in this paper 
are widely accepted by researchers: Coal, coke, crude oil, 
gasoline, kerosene, diesel, fuel oil and natural gas. The net 
calorific value and carbon content of these fuels are shown 
in Table 2.

Table 1. The Factors and Indicators Applied in This Paper

Factors Variables Indicators Unit

CO2 emission y the amount of CO2 emission 10,000 kg

Economic growth x1 Gross Domestic Product (GDP) 100 million RMB

Total population x2 Total population 10,000 persons

Industrial structure x3 the industrial share of GDP none

Energy structure x4 the coal consumption share of TEC none

Technology and innovation x5 Energy intensity TEC/10,000 RMB

Urbanization x6 the urban residents’ share of total population none

Table 2. NCV and CC of the Fuels

Fuel Net calorific value (kJ/kg) Carbon content (kg/GJ)

Coal 20,908 26.8

Coke 28,435 29.2

Crude oil 41,816 20.2

Gasoline 43,070 20.2

Kerosene 43,070 19.6

Diesel 42,652 20.2

Fuel oil 41,816 21.1

Natural gas 38,931 15.3

a. GB/T 2859-2008 General principles for calculation of the comprehensive energy consumption
b. 2006 IPCC Guidelines for National Greenhouse Gas Inventories
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3. Results

In this paper, we choose the commonly used symbols that appear 
in the models detected by former researchers: + (addition), - 
(subtraction), × (multiplication), / (division), exponential, natural 
logarithm, power and square root. The models will be deeper inves-
tigated to identify the factors which will appear in the optimal 
models. 

Take Beijing for example, the panel data from 1995 to 2013 
was selected and used to run symbolic regression. According to 
the thousands of candidate models, the Pareto front was built, 
it is widely accepted that the most promising models lies on the 
Pareto front, and it is suitable for simultaneously balancing fitting 
accuracy and model complexity [40]. The Pareto front of Beijing 
in one trail is shown in Fig. 3. After the construction of Pareto 
front, we should concentrate on the models on the Pareto front. 
In order to investigate the important factors and models, the sym-
bolic regression procedure is repeatedly conducted. It is obvious 
that the model which fits the result best should be selected. In 
addition, the models which frequently emerge on the Pareto front 
could be conceived to be more likely to attach to the authentic 
relationship. 

Fig. 3. The Pareto front of Beijing.

Take Beijing for example, the models returned from the sym-
bolic regression are illustrated in Eq. (2) to Eq. (7). The model 
which fits the given data best is demonstrated in Eq. (2). It 
is obvious that this model fits the data best, but it also owns 
the highest complexity. The more complex candidate model 
usually expresses better fitting performance, but it also suffers 
from a higher risk of over-fitting [17]. In order to check if these 
models are sensitive to the present data sets and keep the risk 
of over-fitting under control, Leave-One-Out Cross Validation 
(LOOCV) method is conducted. Cross-validation is a measure-
ment of assessing the performance of a predictive model, and 
statistical analysis will be generalized to an independent dataset 
[41]. What is generally accepted is that 3 commonly adopted 
cross validation methods are conducted by researchers: Hold-out 
Cross Validation, K-fold Cross Validation and LOOCV. LOOCV 

not only fully utilizes the available data, but also eliminates 
the influence of choices of random pairing. The generalization 
error of LOOCV is nearly unbiased, thus this could make a 
reliable result of estimation.

     

      (2)

      (3)

     (4)

      (5)

    – (6)

    – (7)

In this paper, the cross validation is conducted and the mean 
RMSE of each model is calculated to evaluate the performance. 
The RMSE is calculated as follows:

  





  






(8)

  stands for the predicted value of year .   stands for the 
truth value of CO2 emission. The results of cross validation 
are listed in Table 3. It could be obviously observed that the 
models with lower complexity usually express poorer perform-
ance, whilst the models with higher complexity perform better, 
but too complex models would have higher risk of over-fitting. 
Such as the model No. 2 (Eq. (2)) fits the given data most, but 
its RMSE not performs best. It can be argued that model No. 
2 expresses over-fitting. Model No. 1 (Eq. (3)) has the lowest 
RMSE and relatively low complexity, therefore, the model No. 
1 can be considered to be the best model. Similarly, the selected 
models and cross validation results of Tianjin are also listed 
in Table 3.

As is shown in Table 3, the best models selected by symbolic 
regression and cross validation of Beijing and Tianjin are listed 
as follows.

       (9)

      

            (10)

It could be concluded from the formulas that the carbon emission 
of Beijing is mainly associated with GDP and the industrial share 
of GDP. CO2 emission in Tianjin is related to GDP, total population, 
the coal consumption share of TEC, the urban residents’ share 
of total population.
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4. Discussion

According to the CO2 emission value, which takes 1995 as the 
base year, the CO2 emission trend was demonstrated in Fig. 4(a). 
It can be easily concluded that Beijing and Tianjin have experienced 
an increase in CO2 emission, whilst the trend of the two cities 
were quite different. Carbon emission increase in Tianjin is rela-
tively mild, but it surpassed Beijing at year 2005 and experienced 
a maximum of 177.01% increase from year 1995 to year 2015. 
In Beijing, the condition was quite different. Beijing experienced 
an increase of 40.5% of CO2 emission in the year 2010, much 
lower than that of Tianjin. After that, the CO2 emission started 
to decrease. From 2010 to 2015, the carbon emission even experi-
enced a sharp decrease of 14.94%. 

From Fig. 4(a), it is easy to conclude that during the past 21 
y, CO2 emission in Tianjin kept a steady growth, Beijing experienced 
less increase. In the recent 4 y, the CO2 emission was obviously 
under control, Beijing experienced an obvious steady decrease. 

Drawing from the results returned from symbolic regression, 
the CO2 emission forecasting model could be constructed. In this 
paper, the data necessarily for constructing the model from 1995 
to 2013 is used to build the model. Based on the models, the 
CO2 emission of Beijing and Tianjin could be conducted. The com-
parisons of truth value and predicted value of the year 2014 and 
2015 are illustrated in Table 4. 

Table 4. CO2 Emission Forecast Result

Beijing Tianjin

2014 2015 2014 2015

Truth value 12,825.62 12,341.20 21,362.84 20,893.03

Predicted value 12,380.15 12,077.53 21,740.89 23,419.10

Relative error 3.47% 2.14% 1.77% 12.09%

In this paper, the future trend of indicators adopted in the models 
is predicted by time series prediction method. The CO2 emission 
trend of 2014-2020 is demonstrated in Fig. 4(b).

Based on the result of CO2 emission forecast, it seems that during 
the forecast period, Beijing and Tianjin have different features. 
CO2 emission of Beijing expressed an inverted-U shaped curve 
as time goes on. The forecast result illustrates that Beijing has 
already reached the peak in 2010 and starts to decrease. As for 
Tianjin, CO2 emission will continue to increase till 2020. This 
result meets with results from former researchers [42]. It is recom-
mended that CO2 emission of Beijing and Tianjin will not decrease 
until 2020. However, in this paper, it is more optimistic for Beijing. 
In order to further investigate the CO2 emission of Beijing and 
Tianjin, the analysis based on the models and forecast result is 
conducted.

It could be concluded from the model that the CO2 emission 
in Beijing and Tianjin is related to GDP. This conclusion is consistent 

Table 3. Models Returned from Symbolic Regression
- Beijing

Index Complexity RMSE Model

1 27 255.38802    

2 63 353.06759
   

   

3 25 357.64344   

4 34 381.70980    

5 9 623.66761   

6 5 625.48895   

- Tianjin

Index Complexity RMSE Model

1 35 602.99536     

2 63 610.83346
      

   

3 35 612.71188    

4 32 631.54156    

5 25 631.54232    

6 15 761.05129   

7 9 993.24015   

8 9 1,036.4123   

9 5 1,176.3559   
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with results obtained by former researchers [43, 44]. The trend 
of GDP in Beijing and Tianjin is demonstrated in Fig. 5. It could 
be obviously observed from the trend of data that the basic monotoni-
cally increasing trend of economic growth meets with CO2 emis-
sion increasing trend during this period. It can be argued that 
Beijing and Tianjin have all experienced a relatively fast and 
steady economic growth. From year 1995 to year 2015, the GDP 
in Beijing grows from 1,507.7 × 108 yuan to 23,014.6 × 108 
yuan, which is 15.26 times’ increase. In Tianjin, GDP experienced 
17.74 times’ increase. What interests us is that from 2010 to 
2012, the economic development in Beijing and Tianjin has expe-
rienced a sharp increase. It is consistent with the GDP in Tianjin, 
whilst the CO2 emission in Beijing started to decrease during 
this period. 2010 is the final year of 11th five year plan, and 
2011 is the first year of 12th five year plan. It can be argued 
that it is the 12th five year plan that focuses on the industrial 
transformation and upgrade, which intends to increase the core 
competitiveness that makes the government carry out policies 
to reintegrate the industry in Beijing and Tianjin. However, based 
on the analysis of GDP, it could hardly give an exactly explanation 
of the different expression of CO2 emission in Beijing and Tianjin. 
Thus, it is essential to further investigate on the relationship between 
different factors and CO2 emission.

To make further investigation，the comparative data of Beijing 
and Tianjin is illustrated in Table 5. 

Fig. 5. GDP of Beijing and Tianjin.

As for Beijing, the industrial share of GDP is also conceived 
to be related to the CO2 emission. In this paper, industrial structure 
factor is defined as the industrial share of GDP. It is demonstrated 
that the industrial share of GDP in Tianjin remains stable during 
this period, but in Beijing, the trend is obviously different. The 
industrial share of GDP in Beijing decreased 18.9%. It could be 
observed that Beijing had taken effective measures to further adjust 

a

b

Fig. 4. CO2 emission and forecast result of Beijing and Tianjin.
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the industrial structure, and adhered to “3-2-1” industrial develop-
ment situation. During the 11th five year plan and 12th five year 
plan, Beijing started to remove the industries which beyond the 
environmental carrying capacity or couldn’t match the development 
orientation of Beijing. In the perspective of city orientation, Beijing, 
being the capital of China, should be a combination of political 
center, cultural center, international exchange center and national 
innovation center. Beijing seeks to cultivate new economic growth 
point and focuses on the development of tertiary industry. As for 
the industries in Beijing, it starts to transform from traditional 
industries to the technology-driven manufacturing, and accelerates 
the integration of traditional industries and information technology. 
For example, Shougang group moved to Tangshan in 2008; three 
new high-tech industrial areas, Zhongguancun, Yizhuang and 
Shunyi were established during 1995-2011. It could be argued 
that the implementation of these development policies could ex-
plain the high speed economic development when a relatively 
low CO2 emission standard was kept.

It can be concluded from the model given by symbolic regression 
that GDP, total population, the coal consumption share of TEC 
and the urban residents’ share of total population are linked to 
the CO2 emission in Tianjin. Compared with Beijing, it could be 
observed that Tianjin expressed much more complexity in the 
perspective of carbon emission factors. Tianjin not only owns the 
richest soil resource with the largest comprehensive harbor, but 
also lays a solid manufacturing industrial foundation. The advan-
tages of opening and modern industry make Tianjin express a 
characteristic of the mixture of industrial city and service-type 
city. As Wang and Yang [44] stated, population growth had an 
incremental effect on carbon emissions in Beijing and Tianjin. 
Birdsall [45] considered that there were two aspects of population 
growth affecting carbon emissions. First, a steadily growing pop-
ulation and increasing incomes create a higher demand for goods 
and services which consume resources and energy and generate 
pollutants and greenhouse gases at the same time in every pro-
duction procedure. Second, a larger number of cultivated lands 
are occupied. Soil erosion, soil fertility degradation, soil degradation 
and desertification, environmental deterioration and other issues 
caused by irrational use of land resources become more serious. 
In Tianjin, the fast pace of population growth and urbanization 
experienced a growth of 64.24% and 28.70% respectively, leading 
the surrounding region. It could be argued that it helped to explain 
the link between total population, urbanization and CO2 emission. 
Furthermore, in this model, the factor coal intensity-x4 is conceived 
to be an indicator of CO2 emission. Coal intensity factor helps 

to explain the industrial transformation conducted in Tianjin. 
During 1995-2015, the coal intensity experienced a 28.25% growth. 
The emergence of this factor indicates that Tianjin could have 
a good achievement in industrial transformation.

What we should put into consideration is that the commonly 
used factor energy intensity is not applied in this paper. It could 
be observed that the models involved energy intensity factor x5 
appear in the Pareto front, but these models are not selected as 
the forecast model. One explanation to this phenomenon is that 
the energy intensity factor is gradually diminishing with the genetic 
process going on. It could also make the explanation that these 
models overfit the data, which could not be involved in the forecast 
models. From applicable perspective, it could be argued that energy 
intensity is a derived unit, which reflects the compositive effect 
of economic and social factors, which could not help to forecast 
the CO2 emission. 

It should state that the relationship between CO2 emission and 
economic indicators is investigated under the complex socio-
economic system. It seems impossible to control CO2 emission 
only directly with a certain set of economic indicators. The sig-
nificance of this study lies in the discovery of certain indicators 
that could be significantly related to the CO2 emission, which could 
help to provide appropriate policy implications based on models 
and certain related indicators.

It should also be clarified that all these influential factors are 
provided to aid the forecast of CO2 emission and analysis based 
on the models. The parameters of the forecast model could vary 
as the time goes on. In addition, the parameters are also affected 
by new policy implementation or certain circumstances. The appli-
cation of symbolic regression for a target problem in a specific 
domain, the factors and criterion should be carefully integrated 
with specific knowledge or domain experts. This research further 
expands the investigation on CO2 emission of Beijing and Tianjin 
region, and can be used for reference in the study of carbon emissions 
in similar regions. For the purpose of extending these results in 
regions with similar climates, the selection of proper factors and 
criterion should be selected by detailed analysis or seeking for 
help from domain experts, and proper analysis should be made 
based on it.

5. Conclusions and Policy Implications

Instead of analyzing the data and assuming a model with fixed 
formula or functional pattern, a novel approach –symbolic re-

Table 5. The Comparison of Beijing and Tianjin during 1995-2014

GDP(x1) TP(x2) ISG(x3) CCST(x4) EI(x5) URST(x6)

Beijing

1995 1,507.7 1,251.1 35.0 54.42 2.34 75.63

2015 23,014.6 2,170.5 16.1 13.7 0.338 86.51

Tianjin

1995 931.97 941.83 50.2 67.49 2.58 53.93

2015 16,538.19 1,546.95 42.2 39.23 0.50 82.64
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gression– is conducted. This method is able to automatically find 
the functional forms and the relationship of factors simultaneously. 
In this paper, we analyzed six factors which are generally accepted 
by former researchers to investigate the carbon emission: GDP, 
total population, the industrial share of GDP, the coal consumption 
share of TEC, energy intensity and the urban residents’ share of 
total population. The 21 y data during the period 1995-2015 are 
collected. Based on the experimental results and the analysis, the 
main conclusions are listed as follows:

(1) There is no universal model which is able to fit both Beijing 
and Tianjin. The empirical results show that distinct models are 
constructed based on the data of Beijing and Tianjin. The pattern, 
parameters and influential factors vary from different regions.

(2) Based on the results returned from the symbolic regression, 
the influential factors of Beijing and Tianjin expressed definitely 
different features. It could be argued that this phenomenon is rooted 
in the different development orientation and the mixture of different 
natural and industrial environment. In addition, the influential 
factors are also key points to reduce the CO2 emission and achieve 
a balanced development.

(3) CO2 emission of Beijing region has already peaked in 2010. 
Under current circumstances, the CO2 emission of Beijing will 
gradually diminish. Tianjin could keep a relatively steady growth 
of CO2 emission. 

Based on the findings in this study, the following policy im-
plications are illustrated to balance the CO2 emission and economic 
indicators:

(1) There are different relationships between CO2 emission and 
socioeconomic indicators in Beijing and Tianjin. It is urgent for 
the local government of Beijing and Tianjin to fully understand 
the relationship and choose appropriate models other than blindly 
choose a model ahead of time. Furthermore, it seems improper 
for the region that shows an increasing trend of CO2 emission 
to copy the experience of well-controlled region for the variance 
of different relating factors in different regions. 

(2) It can be observed that in well-controlled region like Beijing, 
the future trend of CO2 emission shows an inverted U-shaped curve, 
which means the CO2 emission is about to fall in the coming years. 
It is proposed that Beijing should continue to implement sustainable 
development policies, and take lead in improving the CO2 reduction. 
As for Tianjin, the CO2 emission shows a monotonically increasing 
trend. It tells us that the CO2 emission will continue to increase 
in the future if no change in current policies occurs. It is advised 
that Tianjin could advance more energy efficiency improvement 
and conduct proper policies related to energy technology applica-
tion, especially in population, coal intensity and urbanization.

(3) It could be obviously observed that the indicators of Beijing 
and Tianjin vary dramatically. This phenomenon could help to 
give us a guide for the policy implementation of coordinate develop-
ment of Beijing, Tianjin and Hebei, the province which is surround-
ing Beijing and Tianjin. For instance, Beijing should reduce its 
industrial share of GDP and improve the share of tertiary industry 
by moving the industrial companies to Tianjin and Hebei. It is 
intended that this policy helps the growth of urbanization rate 
and improving the technology applied in Hebei, which could help 
the upgrade of industry in Hebei province, and improve the com-

petitiveness of Beijing as well. As for Tianjin, the unique position 
and industrial structure make it an important supplement for 
Beijing. The advantage of opening, new strategic industries and 
high-end equipment manufacturing make it fully utilize the pop-
ulation and technology to be a development engine.
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