• Title/Summary/Keyword: $CO_2$ cycling

Search Result 164, Processing Time 0.024 seconds

Soil Carbon Cycling and Soil CO2 Efflux in a Red Pine (Pinus densiflora) Stand

  • Kim, Choon-Sig
    • Journal of Ecology and Environment
    • /
    • v.29 no.1
    • /
    • pp.23-27
    • /
    • 2006
  • This study was conducted to evaluate forest carbon cycling and soil $CO_2$ efflux rates in a 42-year-old pine (Pinus densiflora) stand located in Hamyang-gun, Korea. Aboveground and soil organic carbon storage, litterfall, litter decomposition, and soil $CO_2$ efflux rates were measured for one year. Estimated aboveground biomass carbon storage and increment in this stand were $3,250gC/m^2\;and\;156gC\;m^{-2}yr^{-1}$, respectively. Soil organic carbon storage at the depth of 30 cm was $10,260gC/m^2$ Mean organic carbon inputs by needle and total litterfall were $176gC\;m^{-2}yr^{-1}\;and\;235gC\;m^{-2}yr^{-1}$, respectively. Litter decomposition rates were faster in nne roots less than 2 mm diameter size ($<220\;g\;kg^{-1}yr^{-1}$) than in needle litter ($<120\;g\;kg^{-1}yr^{-1}$). Annual mean and total soil respiration rates were $0.37g\;CO_2m^{-2}h^{-1}$ and $2,732g\;CO_2m^{-2}yr^{-1}$ during the study period. A strong positive relationship existed between soil $CO_2$ efflux and soil temperature (r=0.8149), while soil $CO_2$ efflux responded negatively to soil pH (r=-0.3582).

Protection Effect of ZrO2 Coating Layer on LiCoO2 Thin Film

  • Lee, Hye-Jin;Nam, Sang-Cheol;Park, Yong-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1483-1490
    • /
    • 2011
  • The protection effect of a $ZrO_2$ coating layer on a $LiCoO_2$ thin film was characterized. A wide and smooth $LiCoO_2$ thin film offers sufficient opportunity for careful observation of the reaction at the interface between cathode (coated and uncoated) and electrolyte. The formation of a $ZrO_2$ coating on a $LiCoO_2$ thin film was confirmed by secondary ion mass spectrometry. Scanning electron and atomic force microscopy were used to characterize the surface morphologies of coated and uncoated films before and after cycling. A $ZrO_2$-coated $LiCoO_2$ film showed a higher discharge capacity and rate capability than an uncoated film. This may be associated with a surface protection effect of the coating. The surface of a pristine film was damaged during cycling, whereas the coated film maintained a relatively clear surface under the same measurement conditions. This result clearly demonstrates the protection effect of a $ZrO_2$ coating on a $LiCoO_2$ thin film.

Electrochemical Properties of LiMn1.92Co0.08O4 and LiNi0.7Co0.3O2 Mixtures Prepared by a Simplified Combustion Method (단순화한 연소법에 의해 합성한 LiMn1.92Co0.08O4와 LiNi0.7Co0.3O2 혼합물의 전기화학적 특성)

  • Song, Myoungyoup;Kwon, IkHyun;Kim, Hunuk
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.10 s.269
    • /
    • pp.735-741
    • /
    • 2004
  • $LiMn_{1.92}Co_{0.08}O_4$ and $LiNi_{0.7}Co_{0.3}O_2$ synthesized by a simplified combustion method had good electrochemical properties. Mixtures $LiMn_{1.92}Co_{0.08}O_4$-x wt$\%$ $LiNi_{0.7}Co_{0.3}O_2$ (x=9, 23, 33, 41, and 47) were prepared by milling for 30 min and their electrochemical properties were investigated. The electrode with x=9 had a relatively large first discharge capacity (109.9 mAh/g at 0.1 C) and good cycling performance. The decrease in the discharge capacity of the mixture electrodes with cycling is considered to result mainly from the degradation of $LiNi_{0.7}Co_{0.3}O_2$, caused by coating of $LiNi_{0.7}Co_{0.3}O_2$ with Mn dissolved from $LiMn_{1.92}Co_{0.08}O_4$.

A STUDY ON THE TENSILE STRENGTH OF REINFORCED VENEERING COMPOSITE RESINS FOR CROWN (강화형 치관용 복합레진의 인장강도에 관한 연구)

  • Ahn, Seung-Geun;Kang, Dong-Wan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.2
    • /
    • pp.226-241
    • /
    • 2000
  • Recently a new generation of crown and bridge veneering resins containing submicron glass fillers was introduced. These ultrasmall particle hybrid composite materials distinguish themselves, compared with conventional microfill crown and bridge resins, through improved mechanical properties. It is claimed that these composites are suitable for metal free crowns and even bridges using fiber reinforcement. The purpose of this study was to evaluate the effect of thermal cycling on the tensile strength of the following veneering composites: Artglass(Heraeus Kulzer Co., Wehrheim, Germany), Estonia(Kuraray Co.. Japan), Sculpture(Jeneric Pentron Co., Wallingford, U.S.A.), and Targis(Ivoclar Co., Schaan Liechenstein). According to manufacturer's instructions, rectangular tensile test specimens measuring $1.5{\times}2.0{\times}4.5mm$ were made using a teflon mold. Whole specimens were divided into two groups. One group was dried in a desiccator at $25^{\circ}C$ for 10 days, and another group was subjected to thermal cycling($10,000{\times}$) in water($5/55^{\circ}C$). All test specimens were placed in a universal testing machine and loaded until fracture with a crosshead speed of 0.5mm/min. Weibull analysis and Tukey's test were used to analyze the data. The fracture surfaces of specimens were observed in SEM and the aliphatic C=C absorbance peak of Estenia and Targis resin was analyzed using Fourier transform infrared(FTIR) spectroscopy. Within the limitations imposed in this study, the following conclusions can be drawn: 1. Both in drying condition and thermal cycling condition, the highest tensile strength was observed in Estenia testing group(p<0.05). 2. The strength data were at to single-mode Weibull distribution, and the Weibull modulus of all veneering composite resin specimens increased after thermal cycling treatment. 3. After thermal cycling test, the highest tensile strength was observed in the Estenia group, and the lowest value was observed in the Targis group. The tensile strength values showed the significant differences between each group(p<0.05) 4. The aliphatic C=C absorbance peak of Estonia and Targis resin was decreased after light curing, and there was no distinct change after thermal cycling.

  • PDF

TENSILE BOND STRENGTH BETWEEN NON-PRECIOUS DENTAL ALLOY AND VENEERING REINFORCED COMPOSITE RESINS (치과용 비귀금속 합금과 전장용 강화형 복합레진의 인장결합강도)

  • Yang, Byung-Duk;Park, Ju-Mi;Ko, Sok-Min;Kang, Geon-Gu
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.4
    • /
    • pp.427-437
    • /
    • 2000
  • Recently the 2nd generation laboratory composite resins were introduced. Although the mechanical properties of these composite resins have been improved, there were some disadvantages such as discoloration, low abrasion resistance and debonding between metal and resin. The purpose of this study was to evaluate the tensile bond strength between non-pecious dental alloy(verabond) and four veneering reinforced composite resins ; Targis(Ivoclar Co., U.S.A.), Artglass(Kulzer CO., Germany), Sculpture(Jeneric Pentron Co., U.S.A.), and Estonia(Kurary Co., Japan). All test metal specimens were polished with #1,000 SiC paper, and sandblasted with $250{\mu}m$ aluminum oxide. After then. according to manufacturer's instructions metal adhesive primer and veneering resins were applied. All test specimens were divided into two groups. One group was dried in a desiccator at $25^{\circ}C$ for 3 days, the other group was subjected to thermal cycling($2,000{\times}$) in water($5/55^{\circ}C$). Tensile bond strength was measured using Instron Universal Testing machine and the fractured surface was examined under the naked eyes and scanning electron microscope. Within the limitations imposed in this study, the following conclusions can be drawn: 1. In no-thermal cycling groups, there were no significant differences between Estenia and VMK68 but there were significant differences between Targis, Artglass, Sculpture and VMK68(p<0.05). 2. In no-thermal cycling resin groups, the highest tensile bond strength was observed in Estenia and there were significant differences between Estenia and the other resins(p<0.05). 3. Before and after thermal cycling, there were significant differences in tensile bond strength of Targis and Artglass(p<0.05). The tensile bond strength of Artglass was decreased and that of Targis was increased. 4. In no-thermal cycling groups, Artglass showed mixed fracture modes(95%), but after thermal cycling, Artglass showed adhesive fracture modes(75%).

  • PDF

Li-free Thin-Film Batteries with Structural Configuration of Pt/LiCoO2/LiPON/Cu and Pt/LiCoO2/LiPON/LiCoO2/Cu (Pt/LiCoO2/LiPON/Cu와 Pt/LiCoO2/LiPON/LiCoO2/Cu 구조를 갖는 Li-free 박막전지)

  • Shin, Min-Seon;Kim, Tae-Yeon;Lee, Sung-Man
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.4
    • /
    • pp.243-248
    • /
    • 2018
  • All solid state thin film batteries with two types of cell structure, Pt / $LiCoO_2$ / LiPON / Cu and Pt / $LiCoO_2$ / LiPON / $LiCoO_2$ / Cu, are prepared and their electrochemical performances are investigated to evaluate the effect of $LiCoO_2$ interlayer at the interface of LiPON / Cu. The crystallinity of the deposited $LiCoO_2$ thin films is confirmed by XRD and Raman analysis. The crystalline $LiCoO_2$ cathode thin film is obtained and $LiCoO_2$ as the interlayer appears to be amorphous. The surface morphology of Cu current collector after cycling of the batteries is observed by AFM. The presence of a 10 nm-thick layer of $LiCoO_2$ at the interface of LiPON / Cu enhances the interfacial adhesion and reduces the interfacial resistance. As a result, Li plating / stripping at the interface of LiPON / Cu during charge/discharge reaction takes place more uniformly on Cu current collector, while without the interlayer of $LiCoO_2$ at the interface of LiPON / Cu, the Li plating / stripping is localized on current collector. The thin film batteries with the interlayer of $LiCoO_2$ at the interface of LiPON / Cu exhibits enhanced initial coulombic efficiency, reversible capacity and cycling stability. The thickness of the anode current collector Cu also appears to be crucial for electrochemical performances of all solid state thin film batteries.

A Study on the Electrochemical Properties of LiNi0.8Co0.2-xMxO2[M=Al] Cathode Materials Prepared by Sol-Gel Method (졸-겔법에 의해 제조된 정극 활물질 LiNi0.8Co0.2-xMxO2[M=Al]의 전기화학적 특성)

  • Han, Chang-Joo;Cho, Won-Il;Cho, Byung-Won;Yun, Kyung-Suk;Jang, Ho
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.4
    • /
    • pp.266-270
    • /
    • 2003
  • The $LiN_{0.8}Co_{0.2}O_2$ has shown outstanding electrochemical properties. The microstructure of $LiN_{0.8}Co_{0.2}O_2$ cathode was investigated by using TEM (transmission electron microscopy) and X-ray diffraction techniques. The $LiN_{0.8}Co_{0.2}O_2$ was produced by sol-gel method to synthesize fine particles less than $1{\mu}m$ in the average diameter. In this study, emphasis was given to the examination and interpretation of the microstructural change during charge-discharge cycling experiments, which appeared to be one of the main causes of early degradation of rechargeable batteries. Results showed that the $1{\mu}m$ cathode produced by sol-gel method had high reversible capacity and excellent cycling stability due to its homogeneous distribution of Ni and Co cations on u atomic scale. In particular, the $1{\mu}m$ cathode did not show severe strain induced structural defects or cubic spinel disordering during cycling experiments, which had been observed in the conventional $LiCoO_2$ cathode. The $LiNi_{0.8}Co_{0.2-x}M_x[M=Al]$ compounds show good reversibility but low discharge capacity.

Synthesis of Cathode Materials LiNi1-yCoyO2 from Various Starting Materials and their Electrochemical Properties

  • Song, Myoung-Youp;Rim, Ho;Bang, Eui-Yong;Kang, Seong-Gu;Chang, Soon-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.6
    • /
    • pp.507-512
    • /
    • 2003
  • The LiN $i_{l-y}$ $Co_{y}$ $O_2$ samples were synthesized at 80$0^{\circ}C$ and 85$0^{\circ}C$, by the solid-state reaction method, from the various starting materials LiOH, L $i_2$C $O_3$, NiO, NiC $O_3$, $Co_3$ $O_4$, CoC $O_3$, and their electrochemical properties are investigated. The LiN $i_{l-y}$ $Co_{y}$ $O_2$ pre-pared from L $i_2$C $O_3$, NiO, and $Co_3$ $O_4$ exhibited the $\alpha$-NaFe $O_2$ structure of the rhombohedral system (space group; R3m). As the Co content increased, the lattice parameters a and c decreased. The reason is that the radius of Co ion is smaller than that of Ni ion. The increase in da shows that two-dimensional structure develops better as the Co content increases. The LiN $i_{0.7}$ $Co_{03}$. $O_2$[HOO(800,0.3)] synthesized at 80$0^{\circ}C$from LiOH, NiO, and $Co_3$ $O_4$ exhibited the largest first discharge capacity 162 mAh/g. The size of particles increases roughly as the valve of y increases. The samples with the larger particles have the larger first discharge capacities. The cycling performances of the samples with the first discharge capacity larger than 150 mAh/g were investigated. The LiN $i_{0.9}$ $Co_{0.1}$ $O_2$[COO(850,0.1)] synthesized at 85$0^{\circ}C$ from L $i_2$C $O_3$, NiO, and $Co_3$ $O_4$ showed an excellent cycling performance. The sample with the larger first discharge capacity will be under the more severe lattice destruction, due to the expansion and contraction of the lattice during intercalation and deintercalation, than the sample with the smaller first discharge capacity. As the first discharge capacity increases, the capacity fading rate thus increases.increases.s.s.s.

Crystal Structures, Electrical Conductivities and Electrochemical Properties of LiCo1-XMgxO2(x=0.03) for Secondary Lithium Ion Batteries (리튬 2차 전지용 LiCo1-XMgxO2(x=0.03)의 결정구조, 전기전도도 및 전기화학적 특성)

  • Kim, Ho-Jin;Chung, Uoo-Chang;Jeong, Yeon-Uk;Lee, Joon-Hyung;Kim, Jeong-Joo
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.9 s.280
    • /
    • pp.602-606
    • /
    • 2005
  • [ $LiCoO_{2}$ ] is the most common cathode electrode materials in Lithium-ion batteries. $LiCo_{0.97}Mg_{0.03}O_2$ was synthesized by the solid-state reaction method. We investigated crystal structures, electrical conductivities and electrochemical properties. The crystal structure of $LiCo_{0.97}Mg_{0.03}O_2$ was analyzed by X-ray powder diffraction and Rietveld refinement. The material showed a single phase of a layered structure with the space group R-3m. The lattice parameter(a, c) of $LiCo_{0.97}Mg_{0.03}O_2$ was larger than that of $LiCoO_2$. The electrical conductivity of sintered samples was measured by the Van der Pauw method. The electrical conductivities of $LiCoO_2$ and $LiCo_{0.97}Mg_{0.03}O_2$ were $2.11{\times}10^{-4}\;S/cm$ and $2.41{\times}10^{-1}\;S/cm$ at room temperature, respectively. On the basis of the Hall effect analysis, the increase in electrical conductivities of $LiCo_{0.97}Mg_{0.03}O_2$ is believed due to the increased carrier concentrations, while the carrier mobility was almost invariant. The electrochemical performance was investigated by coin cell test. $LiCo_{0.97}Mg_{0.03}O_2$ showed improved cycling performance as compared with $LiCoO_2$.

Effect of Lowered and Cycled Storage Temperature of Rice Cooker (낮고 반복된 저장 온도의 밥솥에서 밥의 색 및 미생물 성장에 미치는 효과)

  • Na, Hye-Jung;Ryu, Dong-Kul;Lee, Yun-Gi;Oh, Yong-Taek;An, Gil-Hwan
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.7
    • /
    • pp.958-963
    • /
    • 2009
  • To improve the quality of boiled rice after storage in rice cookers, temperature was controlled at a lowered condition ($45{\sim}65^{\circ}C$ repeated temperature cycling), compared to the present commercial rice cookers ($75^{\circ}C$). The effect of lowered temperature cycling on the microbial growth, color of rice, and reducing sugar production was measured. The bacteria Bacillus cereus and B. subtilis were killed at $75^{\circ}C$ and $45{\sim}65^{\circ}C$ cycling. The temperature cycling at $45{\sim}65^{\circ}C$ prevented an increase in colony forming unit of E. coli more than the steady temperature at $75^{\circ}C$. Browning during storage was significantly decreased at $45{\sim}65^{\circ}C$ cycling, compared to $75^{\circ}C$. The yellowness increase (${\Delta}b$ value of CIE parameters of the colorimeter) after the 3-day storage was 2.18 at $45{\sim}65^{\circ}C$ cycling whereas 9.12 at $75^{\circ}C$. Reducing sugar was not produced at $75^{\circ}C$ and $45{\sim}65^{\circ}C$ cycling but produced at $30^{\circ}C$ because of the microbial growth. In conclusion, the temperature cycling at $45{\sim}65^{\circ}C$ can improve the quality of stored boiled rice by decreasing the browning and inhibiting the microbial growth.