• Title/Summary/Keyword: $CO_2$ activation

Search Result 1,071, Processing Time 0.024 seconds

Combustion Characteristics of Minco Sub-bituminous Coal at Oxy-Fuel Conditions (민코 아역청탄의 순산소 연소특성)

  • Kim, Jae-Kwan;Lee, Hyun-Dong;Jang, Seok-Won;Kim, Sung-Chul
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.2
    • /
    • pp.1-9
    • /
    • 2009
  • New way to effectively capture $CO_2$ in coal fired power plant is the combustion of coal using oxy-fuel technology. Combustion characteristics of Minco sub-bituminous coal at oxy-fuel conditions using TGA and drop tube furnace (DTF) were included activation energy about the char burnout, volatile yield and combustion efficiency of raw coal, the porosity of pyrolyzed char and fusion temperature of by-product ash. TGA result shows that the effect of $CO_2$ on combustion kinetics reduces activation energy by approximately 7 kJ/mol at air oxygen level(21% $O_2$) and decreases the burning time by approximately 16%. The results from DTF indicated similar combustion efficiency under $O_2/CO_2$ and $O_2/N_2$ atmospheres for equivalent $O_2$ concentration whereas high combustion efficiency under $O_2/N_2$ than $O_2/CO_2$ was obtained for high temperature of more than $1,100^{\circ}C$. Overall coal burning rate under $O_2/CO_2$ is decreased due to the lower rate of oxygen diffusion into coal surface through the $CO_2$ rich boundary layer. By-product ash produced under $O_2/CO_2$ and $O_2/N_2$ was similar IDT in irrelevant to $O_2$ concentration and atmospheres gas during the coal combustion.

  • PDF

Panax ginseng as a potential therapeutic for neurological disorders associated with COVID-19; Toward targeting inflammasome

  • Seo Won Shin;Ik Hyun Cho
    • Journal of Ginseng Research
    • /
    • v.47 no.1
    • /
    • pp.23-32
    • /
    • 2023
  • Coronavirus disease 2019 (COVID-19) is a highly infectious respiratory disease caused by a severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). SARS-CoV-2 infection may cause clinical manifestations of multiple organ damage, including various neurological syndromes. There are currently two oral antiviral drugs-Paxlovid and molnupiravir-that are recognized to treat COVID-19, but there are still no drugs that can specifically fight the challenges of SARS-CoV-2 variants. Nucleotide-binding oligomerization domain-like receptor pyrin domain-containing-3 (NLRP3) inflammasome is a multimolecular complex that can sense heterogeneous pathogen-associated molecular patterns associated with neurological disorders. The NLRP3 activation stimulates the production of caspase-1-mediated interleukin (IL)-1β, IL-18, and other cytokines in immune cells. Panax (P.) ginseng is a medicinal plant that has traditionally been widely used to boost immunity and treat various pathological conditions in the nervous system due to its safety and anti-inflammatory/oxidant/viral activities. Several recent reports have indicated that P. ginseng and its active ingredients may regulate NLRP3 inflammasome activation in the nervous system. Therefore, this review article discusses the current knowledge regarding the pathogenesis of neurological disorders related to COVID-19 and NLRP3 inflammasome activation and the possibility of using P. ginseng in a strategy targeting this pathway to treat neurological disorders.

Cobalt Chloride-induced Hypoxia Ameliorates NLRP3-Mediated Caspase-1 Activation in Mixed Glial Cultures

  • Kim, Eun-Hee;Won, Ji-Hee;Hwang, Inhwa;Yu, Je-Wook
    • IMMUNE NETWORK
    • /
    • v.13 no.4
    • /
    • pp.141-147
    • /
    • 2013
  • Hypoxia has been shown to promote inflammation, including the release of proinflammatory cytokines, but it is poorly investigated how hypoxia directly affects inflammasome signaling pathways. To explore whether hypoxic stress modulates inflammasome activity, we examined the effect of cobalt chloride ($CoCl_2$)-induced hypoxia on caspase-1 activation in primary mixed glial cultures of the neonatal mouse brain. Unexpectedly, hypoxia induced by oxygen-glucose deprivation or $CoCl_2$ treatment failed to activate caspase-1 in microglial BV-2 cells and primary mixed glial cultures. Of particular interest, $CoCl_2$-induced hypoxic condition considerably inhibited NLRP3-dependent caspase-1 activation in mixed glial cells, but not in bone marrow-derived macrophages. $CoCl_2$-mediated inhibition of NLRP3 inflammasome activity was also observed in the isolated brain microglial cells, but $CoCl_2$ did not affect poly dA:dT-triggered AIM2 inflammasome activity in mixed glial cells. Our results collectively demonstrate that $CoCl_2$-induced hypoxia may negatively regulate NLRP3 inflammasome signaling in brain glial cells, but its physiological significance remains to be determined.

CO2 conversion technology for CO gas synthesis using coal (석탄을 사용한 CO가스 제조를 위한 CO2 전환기술)

  • Lee, Ho-Yong;Park, Ji-Yong;Lee, Jong-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.712-717
    • /
    • 2015
  • In this study, the experiment of CO production was performed using carbon dioxide and coal. The synthesis characteristics of CO gas was investigated using the chemical activation method of KOH. The preparation process has been optimized through the analysis of experimental variables such as activating chemical agents to coal ratio, the flow rate of gas and reaction temperature during $CO_2$ conversion reaction. Without the catalyst of KOH, the 66.7% of $CO_2$ conversion was obtained at the conditions of $T=950^{\circ}C$ and $CO_2$ flow rate of 300 cc/min. On the other hand, the 98.1% of $CO_2$ conversion was obtained using catalyst of KOH at same conditions. It was found that the feed ratio(Coal : KOH = 4 : 1) had better $CO_2$ conversion and CO selectivity than other feed ratios.

The Influence of the Mg-doped p-GaN Layer Activated in the O2 Ambient on the Current-Voltage Characteristics of the GaN-Based Green LEDs (O2 분위기에서 p-GaN 층의 Mg 활성화가 GaN계 녹색 발광소자에 미치는 전류-전압특성)

  • 윤창주;배성준
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.5
    • /
    • pp.441-448
    • /
    • 2002
  • The electrical properties of the GaN-based green light emitting diodes(LEDs) with the Mg-doped p-GaN layer activated in $N_2$ or $O_2$ ambient have been compared. For the $N_2$ -ambient activation the current-voltage behavior of LEDs has been found to be improved when the Mg dopants activation was performed in the higher temperature. However, for the $O_2$-ambient activation the current-voltage characteristic has been observed to be enhanced when the Mg dopants activation was carried out in the lower temperature. The minimum forward voltage at 20mA was obtained to be 4.8 V for LEDs with the p-GaN layer activated at $900^{\circ}C$ in the $N_2$ ambient and 4.5V for LEDs with the p-GaN layer treated at $700^{\circ}C$ in the $O_2$ambient, repectively. The forward voltage reduction of the LEDs treated in the $O_2$-ambient may be related to the oxygen co-doping of the p-GaN layer during the activation process. The $O_2$ -ambient activation process is useful for the enhancement of the LED performance as well as the fabrication process since this process can activate the Mg dopants in the low temperature.

KOH-activated graphite nanofibers as CO2 adsorbents

  • Yuan, Hui;Meng, Long-Yue;Park, Soo-Jin
    • Carbon letters
    • /
    • v.19
    • /
    • pp.99-103
    • /
    • 2016
  • Porous carbons have attracted much attention for their novel application in gas storage. In this study, porous graphite nano-fiber (PGNFs)-based graphite nano fibers (GNFs) were prepared by KOH activation to act as adsorbents. The GNFs were activated with KOH by changing the GNF/KOH weight ratio from 0 through 5 at 900℃. The effects of the GNF/KOH weight ratios on the pore structures were also addressed with scanning electron microscope and N2 adsorption/desorption measurements. We found that the activated GNFs exhibited a gradual increase of CO2 adsorption capacity at CK-3 and then decreased to CK-5, as determined by CO2 adsorption isotherms. CK-3 had the narrowest micropore size distribution (0.6–0.78 nm) among the treated GNFs. Therefore, KOH activation was not only a significant method for developing a suitable pore-size distribution for gas adsorption, but also increased CO2 adsorption capacity as well. The study indicated that the sample prepared with a weight ratio of ‘3’ showed the best CO2 adsorption capacity (70.8 mg/g) as determined by CO2 adsorption isotherms at 298 K and 1 bar.

Decrease of the Activation and Carbamylation of Rubisco by High CO2 in Kidney Bean (KidneyBean에서의 고 CO2 농도에 의한 Rubisco의 Activation과 Carbamylation의 감소)

  • 노광수;김재기
    • KSBB Journal
    • /
    • v.11 no.3
    • /
    • pp.295-302
    • /
    • 1996
  • The measurements of rubisco parameters are important in photosynthetic studies. In this experiment, we used photometric assay method to detect these major parameters, such as activity, carbamylation and amount of rubisco. The main advantages of this method are very simple and as sensitive as conventional methods which usually produce radioactive waste. In this study, with kidney bean (Phaseolus vulgatis L.) leaves grown at normal $CO_2$ (350ppm) and high $CO_2$ (650 ppm), we investigated the effect of $CO_2$ concentration on activation and carbamylation of rubisco by measuring the rubisco activity, carbamylation rate and amount of rubisco using a dual beam (334nm and 405nm) spectrophotometer, and analyzed the polypeptide profiles of rubisco by SDS-PAGE. When $CO_2$ concentration was raised from 350ppm to 650ppm, all parameters of rubisco were decreased : $41.2{\mu}M/m^2/s and 52.2{\mu}M/m^2/s$ to $27.4{\mu}M/m^2/s and 46.1{\mu}M/m^2/s$ for initial and total rubisco activity, respectively ; from 79% to 58.9% for carbamylation rate ; from $1.94 {\mu}M/m^2$ to 1.58{\mu}M/m^2$ for amount of rubisco. These results suggests that the decrease in rubisco activity at high $CO_2$ was caused by carbamylation. The analysis of the preparation by SDS-PAGE showed two major polypeptides at 50 and 14.5 kD which were identified as the large and the small subunits of rubisco. There were no differences in the intensity compared high $CO_2$ to normal $CO_2$ in both 50 kD and 14.5 kD bands. We also found that these inhibitory effects of $CO_2$ were reversible. When high $CO_2$ was switched to normal $CO_2$, the parameters of rubisco changed were almost the same as normal rubisco parameters. These data provide an evidence that activity of rubisco was recovered by $CO_2$ concentration of 350 ppm.

  • PDF

Effects of $CO/CO_{2}$ Additives on The Reaction of Methane Activation using The Zeolite Catalyst (지오라이트 촉매를 이용한 메탄의 활성화 반응에서 일산화탄소/이산화탄소 첨가에 따른 영향)

  • Chung, Gui-Yung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.139-143
    • /
    • 2000
  • There appeared enhancements of the conversion of methane by adding a small amount of CO in the aromatization reaction of methane using the Mo-zeolite catalyst. In case of adding $CO_{2}$, $CO_{2}$ changed to CO first, and then the conversion reaction occurred. It was observed by using isotopes as reactants that CO is related to the aromatization reaction of methane.

Parthenogenetic Activation of Black Bengal Goat Oocytes

  • Haque, Aminul;Bhuiyan, Mohammad Musharraf Uddin;Khatun, Momena;Shamsuddin, Mohammed
    • Journal of Embryo Transfer
    • /
    • v.26 no.2
    • /
    • pp.123-128
    • /
    • 2011
  • In vitro maturation and activation of oocytes are primary steps towards biotechnological manipulation in embryology. The objectives of the present study were to determine the oocyte recovery rate per ovary, in vitro maturation rates of oocytes and rates of parthenogenetically activation of matured oocytes in Black Bengal goats. All visible follicles were aspirated to recover follicular fluid from individual ovaries (number of ovaries = 456). The immature cumulus oocyte complexes (COCs; n = 1289) were cultured in tissue culture medium (TCM)-199 supplemented with 10% (v/v) fetal bovine serum (FBS) for 27 hours at $39^{\circ}C$ with 5% $CO_2$ in humidified air. The matured oocytes (n = 248) were activated with 5 ${\mu}M$ ionomycin for 5 minutes followed by treatment with 2 mM 6-dimethylaminopurine (6-DMAP) for 4 hours. After activation, oocytes were cultured for another 14 hours in TCM-199 supplemented with bovine serum albumin (BSA) at $39^{\circ}C$ with 5% $CO_2$ in humidified air. The pronucleus formation in activated oocytes was determined by staining with 1% orcein (whole mount technique). Matured oocytes (n = 176) without activation stimuli were used as control. The mean number of oocytes recovered per ovary was $3.5{\pm}0.5$. The proportion of oocytes matured in vitro, confirmed by the presence of first polar body, was $42.1{\pm}4.7%$. Parthenogenetic activation, evidenced by formation of pronucleus, occurred in $37.2{\pm}15.8%$ of matured oocytes. No pronucleus formation was observed in control oocytes. In conclusion, a combination of ionomycin and 6-DMAP induces activation in one third of Black Bengal goats' oocytes.