DOI QR코드

DOI QR Code

CO2 conversion technology for CO gas synthesis using coal

석탄을 사용한 CO가스 제조를 위한 CO2 전환기술

  • Lee, Ho-Yong (Department of Chemical Engineering, Chungbuk National University) ;
  • Park, Ji-Yong (Department of Chemical Engineering, Chungbuk National University) ;
  • Lee, Jong-Dae (Department of Chemical Engineering, Chungbuk National University)
  • Received : 2015.11.11
  • Accepted : 2015.12.22
  • Published : 2015.12.30

Abstract

In this study, the experiment of CO production was performed using carbon dioxide and coal. The synthesis characteristics of CO gas was investigated using the chemical activation method of KOH. The preparation process has been optimized through the analysis of experimental variables such as activating chemical agents to coal ratio, the flow rate of gas and reaction temperature during $CO_2$ conversion reaction. Without the catalyst of KOH, the 66.7% of $CO_2$ conversion was obtained at the conditions of $T=950^{\circ}C$ and $CO_2$ flow rate of 300 cc/min. On the other hand, the 98.1% of $CO_2$ conversion was obtained using catalyst of KOH at same conditions. It was found that the feed ratio(Coal : KOH = 4 : 1) had better $CO_2$ conversion and CO selectivity than other feed ratios.

본 연구에서는 이산화탄소와 석탄을 사용하여 합성가스 CO를 생산하는 실험을 수행하였다. CO 합성특성은 KOH 촉매를 사용한 화학적 활성화 방법에 의해 조사되었으며, 제조공정은 $CO_2$ 전환반응에서 석탄과 활성화 촉매 비율, 가스 유량과 반응온도 등과 같은 실험변수들을 분석함으로서 최적화되었다. KOH 촉매를 사용하지 않은 경우, 반응온도 $950^{\circ}C$$CO_2$ 유량 300 cc/min에서 65% $CO_2$ 전환율을 얻었으며, 반면에 촉매를 사용한 경우 같은 반응조건에서 98.1%의 전환율을 얻었다. 석탄의 활성화촉매 반응물의 비(석탄 : KOH = 4 : 1)가 다른 반응물 비에 대해 더 좋은 $CO_2$ 전환율과 CO 선택도 보여줌을 알 수 있었다.

Keywords

References

  1. J. B. Koo, J. S. Sin, J. M. Yang and J. D. Lee, "Autothermal Reforming Reaction at Fuel Process Systems of $1Nm^3$/h", Korean Chem. Eng. Res., 50(5), 802-807 (2012). https://doi.org/10.9713/kcer.2012.50.5.802
  2. M. Bagher and M. Nahid, "Natural-gas futures : Bias, predictive performance, and the theory of storage", Energy Economics, 27(4), 617-637 (2005). https://doi.org/10.1016/j.eneco.2005.04.005
  3. H. D. Gesser and N. R. Hunter, "A Review of C-1 Conversion Chemistry", Catal. Today, 42(3), 183-189 (1998). https://doi.org/10.1016/S0920-5861(98)00090-X
  4. H. S. Cho, J. S. Chung, S. J. Beak, W. J. Choi, J. J. Kim, S. K. Yoon, and J. C. Lee, "Preparation and Properties of Glass Fiber-Reinforced Poly(olefin ketone) Composites", Appl. Chem Eng., 23(3), 339-343 (2012).
  5. I. Wender, "Reactions of synthesis gas", Fuel Process Tech., 48(3), 189-297 (1996). https://doi.org/10.1016/S0378-3820(96)01048-X
  6. M. Krumpelt, R. Kumar and M. M. Kevin, "Fundamentals of fuel cell system in integration", J. Power Sources, 49, 37-51 (1994). https://doi.org/10.1016/0378-7753(93)01794-I
  7. G. J. K. Acres, "Recent Advances in Fuel Cell Technology and Its Applications", J. Power Sources, 100, 60-66 (2001). https://doi.org/10.1016/S0378-7753(01)00883-7
  8. M. A. Pena, J. P. Gomez and J. L. G. Fierro, "New catalytic routes for syngas and hydrogen production", Appl. Catal. A:Gen., 144, 7-57 (1996). https://doi.org/10.1016/0926-860X(96)00108-1
  9. R. Craciun, B. Shereck, and R, J, Gorte, "Kinetic studies of methane steam reforming on ceria-supported Pd", Catal. Lett., 51, 149-153 (1998). https://doi.org/10.1023/A:1019022009310
  10. Y. Ji, W. Li, H. Xu and Y. Chen, "A study on the ignition process for the catalytic partial oxidation of methane to synthesis gas by MS-TPR technique", Catal. Lett., 71(1-2), 45-48 (2001). https://doi.org/10.1023/A:1016648106910
  11. J. M. Yang and Y. J Kim, J. D. Lee. "Syngas Production by Partial Oxidation Reaction over Ni-Pd/$CeO_2$-$ZrO_2$ Metallic Monolith Catalysts", Korean Chem. Eng. Res., 51(3), 319-324 (2013). https://doi.org/10.9713/kcer.2013.51.3.319
  12. D. Ye, J. B. Agnew and D. Zhang, "Gasification of a South Australian Low-rank Coal with Carbon Dioxide and Steam:Kinetics and Reactivity Studies", Fuel, 77(11), 1209-1219 (1998). https://doi.org/10.1016/S0016-2361(98)00014-3
  13. M. F. Infan, M. R. Usman and K. Kusakabe, "Coal Gasification in $CO_2$ Atmosphere and Its Kinetics since 1948: A Brief Review", Energy, 36, 12-40 (2011). https://doi.org/10.1016/j.energy.2010.10.034
  14. J. Ochoa, M. C. Cassanello, P. R. Bonelli and A. L. Cukierman, "$CO_2$ Gasification of Argentinean Coal Chars : A Kinetic Characterization", Fuel, 74(3), 161-176 (2001).
  15. Z. Liu and H. Zhu, "Steam gasification of coal char using alkali and alkaline-earth metal catalysts", Fuel, 65(10), 1334-1338 (1986). https://doi.org/10.1016/0016-2361(86)90099-2
  16. Y. T. Kim, D. K. Seo and J. H. Hwang, "The Effect of Coal Particle Size On Char-$CO_2$ Gasification Reactivity by Gas Analysis", Korean Chem. Eng. Res., 49(3), 372-380 (2011). https://doi.org/10.9713/kcer.2011.49.3.372
  17. S. T. Park, Y. T. Choi and J. M. Sohn, "The Study of $CO_2$ Gasification of Low Rank Coal Impregnated by $K_2CO_3$, $Mn(NO_3)_2$, and $Ce(NO_3)_3$", Appl. Chem. Eng, 22(3), 312-318 (2011).