• Title/Summary/Keyword: $CO_2$ Storage

Search Result 1,445, Processing Time 0.027 seconds

Impact of Sulfur Dioxide Impurity on Process Design of $CO_2$ Offshore Geological Storage: Evaluation of Physical Property Models and Optimization of Binary Parameter (이산화황 불순물이 이산화탄소 해양 지중저장 공정설계에 미치는 영향 평가: 상태량 모델의 비교 분석 및 이성분 매개변수 최적화)

  • Huh, Cheol;Kang, Seong-Gil;Cho, Mang-Ik
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.3
    • /
    • pp.187-197
    • /
    • 2010
  • Carbon dioxide Capture and Storage(CCS) is regarded as one of the most promising options to response climate change. CCS is a three-stage process consisting of the capture of carbon dioxide($CO_2$), the transport of $CO_2$ to a storage location, and the long term isolation of $CO_2$ from the atmosphere for the purpose of carbon emission mitigation. Up to now, process design for this $CO_2$ marine geological storage has been carried out mainly on pure $CO_2$. Unfortunately the $CO_2$ mixture captured from the power plants and steel making plants contains many impurities such as $N_2$, $O_2$, Ar, $H_2O$, $SO_2$, $H_2S$. A small amount of impurities can change the thermodynamic properties and then significantly affect the compression, purification, transport and injection processes. In order to design a reliable $CO_2$ marine geological storage system, it is necessary to analyze the impact of these impurities on the whole CCS process at initial design stage. The purpose of the present paper is to compare and analyse the relevant physical property models including BWRS, PR, PRBM, RKS and SRK equations of state, and NRTL-RK model which are crucial numerical process simulation tools. To evaluate the predictive accuracy of the equation of the state for $CO_2-SO_2$ mixture, we compared numerical calculation results with reference experimental data. In addition, optimum binary parameter to consider the interaction of $CO_2$ and $SO_2$ molecules was suggested based on the mean absolute percent error. In conclusion, we suggest the most reliable physical property model with optimized binary parameter in designing the $CO_2-SO_2$ mixture marine geological storage process.

Numerical Analysis of Flow Characteristics in an Injection Tubing during Supercritical CO2 Injection: Application of Demonstration-scale CO2 Storage Project in the Pohang Basin, Korea (초임계 상태의 CO2 주입시 주입관내 유동 특성의 수치해석적 연구: 포항분지 중소규모 CO2 지중저장 실증 사업에 적용)

  • Jung, Woodong;Sung, Wonmo;Han, Jeongmin;Song, Youngsoo;Wang, Jihoon
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.4
    • /
    • pp.9-17
    • /
    • 2022
  • This paper is the continuation of our previous paper, which we refer to as numerical analysis of phase behavior and flow properties in an injection tubing during gas phase CO2 injection. Our study in this paper show the results during supercritcal CO2 injection under the same project. Geological CO2 storage technology is one of the most effective method to decrease climate change due to high injectivity and storage capacity and economics. A demonstration-scale CO2 storage project was performed in a deep aquifer in the Pohang basin, Korea for a technological development in a large-scale CO2 storage project. A problem to consider in the early stage design of the project was to analyze CO2 phase change and flow characteristics during CO2 injection. To solve this problem, injection conditions were decided by calculating injection rate, pressure, temperature, and thermodynamic properties. For this research, we simulated and numerically analyzed CO2 phase change from liquid to supercritical phase and flow characteristics in injection tubing using OLGA program. Our results provide discharge pressure and temperature conditions of CO2 injection combined with a pressure of an aquifer.

Changes in Polyphenol Oxidase of Apple during the Storage (저장중(貯藏中) 사과의 Polyphenol Oxidase의 변화(變化)에 대(對)하여)

  • Kim, Ok Yeoun;Sohn, Tae Hwa
    • Current Research on Agriculture and Life Sciences
    • /
    • v.1
    • /
    • pp.141-150
    • /
    • 1983
  • This report decribes the changes of internal browning and PPO in apples, when the method of storage was changed in the condition of low temperature. Internal browning was found more Fuji harvested in November than Fuji in October. The degree of internal browning was the highest during the storage of 0.09mm 2% and 0.06mm 2%, 0.06mm 20% was followed. In the subatmospheric storage with complete remove of $CO_2$ internal browning was not observed. During the storage of P.E. film bag, Fuji havested in November was higher than in October, and Fuji on 0.09mm 2% was higher than in 0.06mm, and Fuji during the storage of P.E. film bag was increased in PPO activity and PPO specific activity. During the subatmospheric storage with complete remove of $CO_2$, PPO activity of Fuji was little changed, but it's PPO specific activity was continuously decreased. PPO activity of Ralls was more higher than PPO activity of Fuji. PPO activity and PPO specific activity during the early stage of storage and the end stage of storage were little changed. Internal browning of Fuji was more effected $CO_2$ injury than chilling injury. There is no relation between internal browning and degree of PPO activity was effected by $CO_2$ and slightly related with internal browning.

  • PDF

A Numerical Study on the CO2 Leakage Through the Fault During Offshore Carbon Sequestration (해양지중에 저장된 이산화탄소의 단층을 통한 누출 위험 평가에 관한 수치해석 연구)

  • Kang, Kwangu;Huh, Cheol;Kang, Seong-Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.2
    • /
    • pp.94-101
    • /
    • 2015
  • To mitigate the greenhouse gas emission, many carbon capture and storage projects are underway all over the world. In Korea, many studies focus on the storage of $CO_2$ in the offshore sediment. Assurance of safety is one of the most important issues in the geological storage of $CO_2$. Especially, the assessment of possibility of leakage and amount of leaked $CO_2$ is very crucial to analyze the safety of marine geological storage of $CO_2$. In this study, the leakage of injected $CO_2$ through fault was numerically studied. TOUGH2-MP ECO2N was used to simulate the subsurface behavior of injected $CO_2$. The storage site was 150 m thick saline aquifer located 825 m under the continental shelf. It was assumed that $CO_2$ leak was happened through the fault located 1,000 m away from the injection well. The injected $CO_2$ could migrate through the aquifer by both pressure difference driven by injection and buoyancy force. The enough pressure differences made it possible the $CO_2$ to migrate to the bottom of the fault. The $CO_2$ could be leaked to seabed through the fault due to the buoyancy force. Prior to leakage of the injected $CO_2$, the formation water leaked to seabed. When $CO_2$ reached the seabed, leakage of formation water stopped but the same amount of sea water starts to flow into the underground as the amount of leaked $CO_2$. To analyze the effect of injection rate on the leakage behavior, the injection rate of $CO_2$ was varied as 0.5, 0.75, and $1MtCO_2/year$. The starting times of leakage at 1, 0.75 and $0.5MtCO_2/year$ injection rates are 11.3, 15.6 and 23.2 years after the injection, respectively. The leakage of $CO_2$ to the seabed continued for a period time after the end of $CO_2$ injection. The ratios of total leaked $CO_2$ to total injected $CO_2$ at 1, 0.75 and $0.5MtCO_2/year$ injection rates are 19.5%, 11.5% and 2.8%, respectively.

Quality Properties of Peeled Ginger by Controlled Atmosphere(CA) Storage (CA저장에 의한 박피생강의 품질특성)

  • Lee, Myung-Hee;Lee, Kyoung-Hoe;Kim, Kyung-Tack
    • Journal of Food Hygiene and Safety
    • /
    • v.26 no.4
    • /
    • pp.342-348
    • /
    • 2011
  • The quality properties of peeled ginger (PG) were investigated during CA storage at different $CO_2$ concentrations. $O_2$ concentration was kept constant at 5% while $CO_2$ of 6%, 14%, 22% and 30% were used. It was found that the weight loss rate tended to decrease with an increase of $CO_2$. In the case of fixed $10^{\circ}C$ storage, the L-value and a-value of the exterior color in treatment increased more than that of control with respect to time, while the b-value of the exterior color and the cutting plane color showed no significant difference. In the exterior color, the results of PG-$25^{\circ}C$ showed similar with PG-$10^{\circ}C$ except b-value of the exterior color which showed not a little change. The cutting plane color did not showed significantly difference in the PG samples between $25^{\circ}C$ and $10^{\circ}C$. Hardness of the PG during storage was found to decrease most severely at 6% of $CO_2$ concentration regardless of storage temperature. The growth of microorganisms during storage of the PG tended to be restrained as $CO_2$ concentration increased. However, microorganisms, when maintained at $25^{\circ}C$ storage, multiplied rapidly to $10^8$ CFU/g within 4 days regardless of concentration.

Gravity monitoring of $CO_2$ storage in a depleted gas filed: A sensitivity study (채굴후 가스전내 $CO_2$ 저장소의 중력 모너터링: 감도 연구)

  • Sherlock, Don;Toomey, Aoife;Hoversten, Mike;Gasperikova, Erika;Dodds, Kevin
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.37-43
    • /
    • 2006
  • In 2006, the Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC) plans to undertake (subject to receiving the necessary approvals) a Pilot program for $CO_2$ storage within a depleted gas reservoir. The Otway Basin Pilot Program (OBPP) aims to demonstrate that subsurface $CO_2$ storage is both economically and environmentally sustainable in Australia. This will be the first $CO_2$ storage program in the world to utilise a depleted gas reservoir and, hence, the experience gained will be a valuable addition to the range of international $CO_2$ storage programs that are underway or being planned. A key component of the OBPP is the design of an appropriate geophysical monitoring strategy that will allow the subsurface migration of the $CO_2$ plume to be tracked and to verify that containment has been successful. This paper presents the results from modelling the predicted gravity response to $CO_2$ injection into the Otway Basin reservoir, where the goal was to determine minimum volumes of $CO_2$ that may be detectable using non-seismic geophysical techniques. Modelling results indicate that gravity measurements at 10 m spacing within the existing observation well and the planned $CO_2$ injection well would provide excellent vertical resolution, even for the smallest $CO_2$ volume modelled (10000 tonnes), but resolving the lateral extent of the plume would not be possible without additional wells at closer spacing.

Assessment of CO2 Geological Storage Capacity for Basalt Flow Structure around PZ-1 Exploration Well in the Southern Continental Shelf of Korea (남해 대륙붕 PZ-1 시추공 주변 현무암 대지 구조의 CO2 지중저장용량 평가)

  • Shin, Seung Yong;Kang, Moohee;Shinn, Young Jae;Cheong, Snons
    • Economic and Environmental Geology
    • /
    • v.53 no.1
    • /
    • pp.33-43
    • /
    • 2020
  • CO2 geological storage is currently considered as the most stable and effective technology for greenhouse gas reduction. The saline formations for CO2 geological storage are generally located at a depth of more than 800 m where CO2 can be stored in a supercritical state, and an extensive impermeable cap rock that prevents CO2 leakage to the surface should be distributed above the saline formations. Trough analysis of seismic and well data, we identified the basalt flow structure for potential CO2 storage where saline formation is overlain by basalt cap rock around PZ-1 exploration well in the Southern Continental Shelf of Korea. To evaluate CO2 storage capacity of the saline formation, total porosity and CO2 density are calculated based on well logging data of PZ-1 well. We constructed a 3D geological grid model with a certain size in the x, y and z axis directions for volume estimates of the saline formation, and performed a property modeling to assign total porosity to the geological grid. The estimated average CO2 geological storage capacity evaluated by the U.S. DOE method for the saline formation covered by the basalt cap rock is 84.17 Mt of CO2(ranges from 42.07 to 143.79 Mt of CO2).

Thermal-Hydraulic Analysis of Pipeline Transport System for Marine Geological Storage of Carbon Dioxide (이산화탄소 해양지중저장 처리를 위한 파이프라인 수송시스템의 열-유동 해석)

  • Huh, Cheol;Kang, Seong-Gil;Hong, Sup;Choi, Jong-Su;Baek, Jong-Hwa
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.88-94
    • /
    • 2008
  • The concentration of atmospheric carbon dioxide (CO2), which is one of the major greenhouse gases, continues to rise with the increase in fossil fuel consumption. In order to mitigate global warming the amount of CO2 discharge to the atmosphere must be reduced. Carbon dioxide capture and storage (CCS) technology is now regarded as one of the most promising options. To complete the carbon cycle in a CCS system, a huge amount of captured CO2 from major point sources such as power plantsshould be transported for storage into the marine or ground geological structures. Since 2005, we have developed technologies for marine geological storage of CO2,including possible storage site surveys and basic design of CO2 transport and storage process. In this paper, the design parameters which will be useful to construct on-shore and off-shore CO2 transport systems are deduced and analyzed. To carry out this parametric study, we suggested variations in thedesign parameters such as flow rate, diameter, temperature and pressure, based on a hypothetical scenario. We also studied the fluid flow behavior and thermal characteristics in a pipeline transport system.

Seismic Imaging of Ocean-bottom Seismic Data for Finding a Carbon Capture and Storage Site: Two-dimensional Reverse-time Migration of Ocean-bottom Seismic Data Acquired in the Pohang Basin, South Korea (이산화탄소 지중저장 부지 선정을 위한 해저면 탄성파 탐사자료의 영상화: 포항 영일만 해저면 탐사자료의 2차원 역시간 구조보정)

  • Park, Sea-Eun;Li, Xiangyue;Kim, Byoung Yeop;Oh, Ju-Won;Min, Dong-Joo;Kim, Hyoung-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.3
    • /
    • pp.78-88
    • /
    • 2021
  • Owing to the abnormal weather conditions due to global warming, carbon capture and storage (CCS) technology has attracted global attention as a countermeasure to reduce CO2 emissions. In the Pohang CCS demonstration project in South Korea, 100 tons of CO2 were successfully injected into the subsurface CO2 storage in early 2017. However, after the 2017 Pohang earthquake, the Pohang CCS demonstration project was suspended due to an increase in social concerns about the safety of the CCS project. In this study, to reconfirm the structural suitability of the CO2 storage site in the Pohang Basin, we employed seismic imaging based on reverse-time migration (RTM) to analyze small-scale ocean-bottom seismic data, which have not been utilized in previous studies. Compared with seismic images using marine streamer data, the continuity of subsurface layers in the RTM image using the ocean-bottom seismic data is improved. Based on the obtained subsurface image, we discuss the structural suitability of the Pohang CO2 storage site.

Numerical Analysis of Phase Behavior and Flow Properties in an Injection Tubing during Gas Phase CO2 Injection : Application of Demonstration-scale Offshore CO2 Storage Project in the Pohang Basin, Korea (기체상태의 CO2 주입시 주입관내 상변화 및 유동 특성의 수치해석적 연구 : 포항분지 해상 중소규모 CO2 지중저장 사업에 적용)

  • Jung, Woodong;Sung, Wonmo;Han, Jeong-Min;Song, Youngsoo;Wang, Jihoon
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.4
    • /
    • pp.10-18
    • /
    • 2021
  • CO2 storage technology in an aquifer is one of the most effective way to decrease global warming due to a high storage capacity and economics. A demonstration-scale offshore CO2 storage project was performed in a geological deep aquifer in the Pohang Basin, Korea for a technological development of large-scale CO2 storage. A challenging issue in the early design stage of the project was to establish the proper injectivity during CO2 injection. To solve this issue, injection conditions were calculated by calculating injection rate, pressure, temperature, CO2 phase change, and thermodynamic properties. For this study, we simulated and numerically analyzed CO2 phase change from gas to supercritical phase and flow behavior in transport piping and injection tubing using OLGA program. Our results provide the injectivity conditions of CO2 injection system combined with a bottomhole pressure of an aquifer.