• Title/Summary/Keyword: $CO_2$ Removal Efficiency

Search Result 439, Processing Time 0.021 seconds

Coagulation-membrane separation hybrid treatment of secondary treated effluent for high efficiency phosphorus removal (하수 2차처리 방류수의 총인 고효율 처리를 위한 응집·막분리 혼성처리)

  • Choi, Wookjin;Lee, Byungha;Park, Joonhong;Cha, Hoyoung;Lee, Byungchan;Song, Kyungguen
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.1
    • /
    • pp.47-53
    • /
    • 2018
  • This study investigated phosphorus removal from secondary treated effluent using coagulation-membrane separation hybrid treatment to satisfy strict regulation in wastewater treatment. The membrane separation process was used to remove suspended phosphorus particles after coagulation/settlement. Membrane separation with $0.2{\mu}m$ pore size of micro filtration membrane could reduce phosphorus concentration to 0.02 mg P/L after coagulation with 1 mg Al/L dose of polyaluminum chloride (PACl). Regardless of coagulant, the residual concentration of phosphorus decreased as the dose increased from 1.5 to 3.5 mg Al/L, while the target concentration of 0.05 mg P/L or less was achieved at 2.5 mg Al/L for the aluminum sulfate (Alum) and 3.5 mg Al/L for PACl. Moreover, alum showed better membrane flux as make bigger particles than PACl. Alum showed a 40% of flux decrease at 2.5 mg Al/L dose, while PACl indicated a 50% decrease of membrane flux even with a higher dose of 3.5 mg Al/L. Thus, alum was more effective coagulant than PACl considering phosphorus removal and membrane flux as well as its dose. Consequently, the coagulation-membrane separation hybrid treatment could be mitigate regulation on phosphorus removal as unsettleable phosphorus particles were effectively removed by membrane after coagulation.

Removal of NOx and $SO_2$ from Combustion Flue Gases by Corona Discharge Systems (코로나 방전 시스템을 이용한 연소가스중의 NOx, $SO_2$제거)

  • 박재윤
    • Electrical & Electronic Materials
    • /
    • v.10 no.8
    • /
    • pp.830-835
    • /
    • 1997
  • In this study an experimental investigation has been conducted to remove NOx and SO$_2$simultaneously from a combustion flue gases were consisted of NO-SO$_2$-$CO_2$-$N_2$-O$_2$([NO]o:200ppm and [SO$_2$]o:800ppm) and the injection gases used as radical source gases were NH$_3$-Ar-air and CH$_4$-Ar-air. NOx and SO$_2$removal efficiency and the other by-products were measured by Fourier Transform Infrared(FTIR) as well as SO$_2$, NOx and NO$_2$gas detectors. and SEM images after sampling. The results showed that a significant Nucleating Particle Counter(CNPC) and SEM images after sampling. The results showed that a significant aerosol particle formation was observed during a simultaneous NOx and SO$_2$removal operation in corona radical shower systems. The diameter of aerosol particles was in the range of 0.18 to 3.6${\mu}{\textrm}{m}$ with a maximum fraction of particles at particles diameter of 1${\mu}{\textrm}{m}$. The NOx removal efficiency significantly increased with increasing applied voltage and NH$_3$molecule ratio. The SO$_2$removal efficiency was not significantly effected by applied voltage and slightly increased with increasing NH$_3$molecule ratio. It could be found that it is possible to use CH$_4$for NOx and SO$_2$removal by corona radical shower systems.

  • PDF

Simultaneous Removal of $SO_2/NO$ using liquid Homogeneous Catalyst (액상 균일질 촉매를 이용한 $SO_2/NO$ 동시 처리 기술 개발)

  • Jung, Seung-Ho;Bae, Jin-Youl;Park, Don-Hee;Jung, Kyung-Hoon;Cha, Jin-Myeong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.1
    • /
    • pp.62-67
    • /
    • 2007
  • It was investigated to develop the technology for simultaneous removal of $SO_2/NO$ in flue gas using liquid homogeneous catalyst. Test was carried out using a bench scale and a pilot scale experiment. The investigation led to the following results: 1) Removal efficiency of $SO_2$ gas showed good results regardless of operating condition. Removal efficiency of NO gas, however, proportionally increased with higher packing height, lower concentration and larger injection rate of catalyst 2) The optimum design parameters for simultaneous removal of $SO_2/NO$ gas using Fe(II)-EDTA catalyst were as follow: HTU(height of transfer unit) = 0.5 m, liquid gas ratio = 20 $L/m^3$, NTU (number of transfer unit) = 3 stages, cross dimension of scrubber=0.025 $m^2$ 3) The removal efficiencies of $SO_2$ and NO were 95% and 81%, repletely. 4) The high HTU is advantageous on removal of the NO, but the excessive HTU diminishes operating efficiency. Consequently, it is important to decide the HTU of optimum.

The Simultaneous removal of NOx using Wet Scrubber (습식 스크러버를 이용한 NOx 제거에 관한 연구)

  • Kim, Jae-Gang;Lee, Ju-Yeol;Park, Byung Hyun;Choi, Jin-Sik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.296-301
    • /
    • 2015
  • The experiment was performed for in order to remove NOx which is generated in the Ship's engine. it was performed test in order to remove NOx which is generated in the Ship's engine. It was used as the oxidizing agent sodium chlorite. Use the oxidizer is nitrogen monoxide was oxidized to nitrogen dioxide. and was tested pH adjustment to increase the efficiency of oxidizing. An aqueous solution of sodium hydroxide was used for the nitrogen dioxide absorbent. Low concentration of the solution, it showed a high efficiency. improves the absorption efficiency by add additives.

Experimental studies of energy savings and economic effects by direct removal of carbon dioxide in the multi-use facility ($CO_2$ 직접 제거를 통한 다중이용시설의 에너지 절감 및 경제적 효과에 대한 실험적 연구)

  • Kim, Yo Seop;Lee, Ju-Yeol;Choi, Jin Sik;Shin, Jae Ran;Lim, Yun Hui;Park, Byung Hyun;Kim, Yoon-Shin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.466-471
    • /
    • 2014
  • It is important to develop the smart ventilation system in order to minimize a building energy consumption using ventilation. In this study, We evaluated the efficiency of the smart ventilation system being developed at the nursery. To evaluate the energy savings and carbon dioxide removal efficiency, two kinds of experimental conditions were compared. First, air conditioner and Smart HVAC system were operated. Second, air conditioner was operating and external air was put into the inside by rate of air circulation. It was more effective when working with air conditioning and ventilation system at the same time. If the Smart HVAC system is applied in a multi-use facility, indoor air quality will be comfortable and the social cost will be reduced.

Development of VOCs Treatment Technology using High Efficiency Hybrid System with Multi-Scrone (멀티 선회류식 세정장치를 이용한 고효율 하이브리드 VOCs 습식처리 SYSTEM 개발)

  • Lim, Seong-Il;Kim, Nor-Jung;Kim, Sun-Mi;Lee, Seong-Hun;Kim, Sun-Uk;Chang, Won-Seok;Park, Dae-Won;Kim, Lae-Hyun;Kim, Jae-Hyung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.7
    • /
    • pp.491-498
    • /
    • 2009
  • We studied to develop high-efficiency removal system of odor and VOCs(Volatile Organic Compounds) from environmental infrastructure facilities and oil refineries, painting facilities and so on. It can replace RTO and RCO. We tried an removal experiment for VOCs (toluene, xylene, benzene, MEK(methyl ethyl ketone), ethanol, formalin etc. and odor compounds (hydrogen sulfide, etc.). In process, as pre-treatment we used the scrubber with vortex flow (Multi-scrone) to remove the hydrophilic VOCs and as post-treatment, used fibrous bio-filter to remove the hydrophobic VOCs. This hybrid system remove with high efficiency both the hydrophilic VOCs and hydrophobic VOCs. And we tried to make this system to be compact. In experiment using Multi-scrone, contact time is 2~3 seconds and absorption scrubbing water is diaphragm-type electrolysis water. hydrophilic VOCs like ethanol and relatively hydrophilic odor compounds like hydrogen sulfide is excellent, these substances has been removed almost completely, respectively 95~99%, 93~97%. And for MEK, formalin also Showed a high removal efficiency, respectively 78~90%, 72~85%. But in experiment using Multi-scrone, the hydrophobic VOCs like BTX showed a low removal efficiency, respectively 16~22%, 12~18%, 8~16%. In hydrophobic VOCs, toluene removal experiment using fibrous bio-filter, early efficiency was low but after 10days, adaptation period showed high efficiency 85~95%. but in the mixed phase, toluene and MEK efficiency reduced 5~10%. this show microorganism treat first MEK easy to remove. The removal efficiency for MEK using the fibrous biofilter was stable, 80~92%. This hybrid system is also high economical efficiency for RTO. This system reduce more than 50% the cost of equipment and maintenance. As a result, we expect this technology is in the limelight as high efficiency treatment of VOCs in mid-low price.

Evaluation Method on Destruction and Removal Efficiency of Perfluorocompounds from Semiconductor and Display Manufacturing

  • Lee, Jee-Yon;Lee, Jin-Bok;Moon, Dong-Min;Souk, Jun-Hyung;Lee, Seung-Yeon;Kim, Jin-Seog
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.8
    • /
    • pp.1383-1388
    • /
    • 2007
  • Recently, the semiconductor and display industries have tried to reduce the emissions of perfluorocompounds (PFCs) from the globally environmental regulation. Total amount of PFC emission can be calculated from the flow rate and the partial pressures of PFCs. For the precise measurement of PFC emission amount, the mass flow controlled helium gas was continuously injected into the equipment of which scrubber efficiency is being measured. The partial pressures of PFCs and helium were accurately measured using a mass spectrometer in each sample extracted from inlet and outlet of the scrubber system. The flow rates are calculated from the partial pressures of helium and also, PFC destruction and removal efficiency (DRE) of the scrubber is calculated from the partial pressure of PFC and the flow rate. Under this method, the relative expanded uncertainties of the flow rate and the partial pressures of PFCs are ± 2% (k = 2) in case the concentrations of NF3 and SF6 are as low as 100 μmol/mol.

In-situ Methane Enrichment System Coupled with External $CO_2$ Stripper in Mesophilic Anaerobic Digestion (중온혐기성소화조에서 외부 $CO_2$ Stripping을 이용한 In-situ 고순도 메탄회수 공정 개발)

  • Kang, Ho;Jeong, Ji-Hyun;Lim, Seon-Ae;Lee, Hye-Mi
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.3
    • /
    • pp.155-161
    • /
    • 2012
  • A simple in-situ methane enrichment system in mesophilic anaerobic digestion was developed to take advantage of the differing solubilities of $CO_2$ and methane. The methane enhancement systems consisted of low solids plug-flow maize digester coupled with a leachate recycle loop to an external $CO_2$ stripper. The effects of leachate recycle rate (LRR) and reactor alkalinity on the resulting offgas $CH_4$ contents, biogas productivity and TVS removal efficiency were quantitively evaluated. The results showed that offgas $CH_4$ contents of over 94% was achieved at 3 volume of leachate recycle per volume of reactor per day (3 v/v-d) and at the reactor alkalinity of 4 g/L as $CaCO_3$, as the optimum operating conditions. The TVS removal efficiency of the methane enhancement system was 79% which corresponds to 94% of the control reactor and the methane productivity appeared to be 0.71 v/v-d. Offgas methane contents correlated well with LRR. However excessively high LRR led to the decrease in TVS removal efficiency.

Particle Separation and Flotation Efficiency by Dissolved Carbon Dioxide Flotation Process (용존이산화탄소부상(DCF) 공정의 입자분리 특성과 부상효율)

  • Kwak, Dong-Heui;Kim, Seong-Jin;Jung, Heung-Jo;Park, Yang-Kyun;Yoo, Young-Hoon;Lee, Young-Dong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.4
    • /
    • pp.471-478
    • /
    • 2011
  • A series of laboratory experiments carried out to investigate the particle separation efficiency and flotation characteristics using $CO_2$ bubbles. The primary objective of this study was to find out the feasibility of $CO_2$ bubbles as an applicable unit of flotation process in tap-water and wastewater treatment plant. The fundamental measurements were conducted to characterize the $CO_2$ bubble from the physical viewpoint in water including bubble size distribution and rising velocity under various operational conditions. In addition, the removal efficiency of solid was experimented using the lab scale plant applied $CO_2$ bubbles, namely the dissolved carbon dioxide flotation (DCF) process. The DCF process using carbon dioxide bubble, which is an advantage as the decrease and the reuse of Green-House gas, can be a promising technology as an water treatment process. On the other hand, the further research to decrease the bubble size distribution of $CO_2$ is required to enhance the particle separation efficiency.

Estimation of Nutrient Removal Efficiency and Phase Conversion Rate of Single Reactor SBR and SBR with Flexible Vertical (단일 및 가변형 SBR 공법의 영양염류 처리효율 및 "상"전환속도 평가)

  • Kim, Man-Soo;Park, Jong-Woon;Park, Chul-Whi;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.11
    • /
    • pp.1215-1221
    • /
    • 2005
  • The purpose of this research was to compare the nutrient removal efficiency, and to estimate the net reaction time in order to calculate a "phase" transfer rate. SBR(SBR1) with flexible verticals and single reactor SBR(SBR1). Consequently, the removal efficiencies of $COD_{Cr}$, and $BOD_5$ in SBR1 and SBR2 were 91.5%, 97.5% and 90.4%, 97.3%, Respectively. Accordingly, the organic removal efficiency was not distinguished in both processes. In the T-N and T-P removal efficiencies, however, SBR1 obtained higher removal efficiency than SBR2, at 12.1% and 7.6% respectively. Also, in the experiment to estimate the "phase" transfer rate, SBR1 was higher than SBR2 Because SBR1 has two phases in the single reactor simultaneously, it has the buffer capacity to reduce the "phase" transfer time and provides a definite reaction condition.