• 제목/요약/키워드: $CO_2$ Gasification

검색결과 222건 처리시간 0.031초

Water Gas Shift Reaction Research of the Synthesis Gas for a Hydrogen Yield Increase (수소 수율 증가를 위한 합성가스의 수성가스전환 반응 연구)

  • Kim, Min-Kyung;Kim, Jae-Ho;Kim, Woo-Hyun;Lee, See-Hoon
    • New & Renewable Energy
    • /
    • 제5권2호
    • /
    • pp.9-14
    • /
    • 2009
  • Automobile Shredder Residue (ASR) is very appropriate in a gasification melting system. Gasification melting system, because of high reaction temperature over than $1,350^{\circ}C$, can reduce harmful materials. To use the gasification processes for hydrogen production, the high concentration of CO in syngas must be converted into hydrogen gas by using water gas shift reaction. In this study, the characteristics of shift reaction of the high temperature catalyst (KATALCO 71-5M) and the low temperature catalyst (KATALCO 83-3X) in the fixed - bed reactor has been determined by using simulation gas which is equal with the syngas composition of gasification melting process. The carbon monoxide composition has been decreased as the WGS reaction temperature has increased. And the occurrence quantity of the hydrogen and the carbon dioxide increased. When using the high temperature catalyst, the carbon monoxide conversion ratio ($1-CO_{out}/CO_{in}$) rose up to 95.8 from 55.6. Compared with average conversion ratio from the identical synthesis gas composition, the low temperature catalyst was better than the high temperature catalyst.

  • PDF

Deactivation Behavior of K2CO3 Catalyst in the Steam Gasification of Kideco Coal (Kideco 석탄의 스팀 가스화 반응에서 K2CO3 촉매의 비활성화 거동)

  • VICTOR, PAUL;KIM, SOOHYUN;YOO, JIHO;LEE, SIHYUN;RHIM, YOUNGJOON;LIM, JEONGHWAN;KIM, SANGDO;CHUN, DONGHYUK;CHOI, HOKYUNG;RHEE, YOUNGWOO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • 제27권5호
    • /
    • pp.517-525
    • /
    • 2016
  • The present work investigates the effect of $K_2CO_3$ catalyst on steam gasification of Kideco coal and the deactivation of the catalyst due to thermal exposure and interaction with coal ash. The gasification reactivity at $700^{\circ}C$ is highly enhanced by $K_2CO_3$, which is not deactivated by the heat treatment at $T{\leq}800^{\circ}C$. TGA and XRD results prove minor decomposition of $K_2CO_3$ after the calcination at $800^{\circ}C$. $K_2CO_3$ is, however, evaporated at the higher temperature. Assuming the conversion of $K_2CO_3$ into $K_2O$ by the decomposition and into $K_2O{\cdot}2.5SiO_2$ and $KAlO_2$ by the interaction with coal ash, the reactivity of the gasification is evaluated in the presence of $K_2O$, $K_2O{\cdot}2.5SiO_2$ and $KAlO_2$. Among them, $K_2O$ is the most active, but much lower in the activity than $K_2CO_3$. XRD results show that $K_2CO_3$ could react readily with the ash above $700^{\circ}C$.

Operation Characteristics of Gasification/Melting Pilot Plants for Synthesis Gas Production using Coal and Waste (석탄 및 폐기물로부터 합성가스 제조를 위한 가스화용융 Pilot Plant 운전특성)

  • Chung, Seok-Woo;Yun, Yong-Seung;Yoo, Young-Don
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.561-564
    • /
    • 2005
  • Gasification has been regarded as a very important technology to decrease environmental pollution and to obtain higher efficiency. The gasification process converts carbon containing feedstock into a synthesis gas, composed primarily of CO and $H_2$. And the synthesis gas can be used as a source for power generation or chemical material production. Through more than nine years, IAE developed and upgraded several gasification/melting pilot plant system, and obtained a good quality synthesis gas. This paper illustrates the gasification characteristics and operation results of two 3 ton/day synthesis gas production facilities. One is entrained-bed slagging type coal gasifier system which is normally operated in the temperature range of $1,400\~1,450^{\circ}C,\;8\~10$ bar pressure. And the other is fixed-bed type gasification/melting furnace system using MSW and industrial wastes as a feedstock.

  • PDF

The Computer-Aided Simulation Study on the Gasification Characteristics of the Roto Coal in the Partitioned Fluidized-Bed Gasifier (상용모사기를 이용한 로토석탄의 분할유동층 가스화기 가스화 특성 모사)

  • Park, Young Cheol;Moon, Jong-Ho;Lee, Seung-Yong;Lee, Dong-Ho;Jin, Gyoung Tae
    • Korean Chemical Engineering Research
    • /
    • 제50권3호
    • /
    • pp.511-515
    • /
    • 2012
  • In this study, we used a commercial simulator to investigate the gasification characteristics of Roto coal in the partitioned fluidized-bed gasifier, which consists of 4 parts such as coal pyrolysis, char gasification, tar/oil gasification and char combustion. The heating medium was exchanged between the combustion part and the gasification part in order to supply the energy needed for pyrolysis and gasification. The correlation model from experimental data in relation to the reaction temperatures, the reaction gases and the coal feed rates was derived for the coal pyrolysis. The equilibrium model was used for the gasification and the combustion model for the char combustion. In order to compare the reaction behavior of the partitioned fluidized-bed gasifier, the single-bed gasifier was also simulated. The cold gas efficiency of both partitioned fluidized-bed gasifier and single-bed gasifier was almost the same. The $H_2$ and $CH_4$ contents of the syngas in the partitioned fluidized-bed gasifier slightly increased and the CO and $CO_2$ contents slightly decreased, compared with the singlebed gasifier. In order to verify the model, ten cases of the single-bed gasification experiment have been simulated. The contents of CO, $CO_2$, $CH_4$ in the syngas from the simulation corresponded with the experimental data while those of $H_2$ was slightly higher than experimental data, but the tendency of $H_2$ content in the syngas was similar to the experiments. In the coal conversion, the simulation results were higher than the experiments since equilibrium model was used for the gasification so that the residence time and contact time in the model is different from the experiments.

Hydrogen Conversion of Syngas by Using WGS Reaction in a Coal Gasifier (가스화기에서 WGS 반응을 통한 합성가스의 수소 전환)

  • Lee, See Hoon;Kim, Jung Nam;Eom, Won Hyun;Baek, Il Hyun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • 제24권1호
    • /
    • pp.12-19
    • /
    • 2013
  • A gasification process with pre-combustion $CO_2$ capture process, which converts coal into environment-friendly synthetic gas, might be promising option for sustainable energy conversion. In the coal gasification for power generation, coal is converted into $H_2$, CO and $CO_2$. To reduce the cost of $CO_2$ capture and to maximize hydrogen production, the removal of CO and the additional production of hydrogen might be needed. In this study, a 2l/min water gas shift system for a coal gasifier has been studied. To control the concentration of major components such as $H_2$, CO, and $CO_2$, MFCs were used in experimental apparatus. The gas concentration in these experiments was equal with syngas concentration from dry coal gasifiers ($H_2$: 25-35, CO: 60-65, $CO_2$: 5-15 vol%). The operation conditions of the WGS system were $200-400^{\circ}C$, 1-10bar. Steam/Carbon ratios were between 2.0 and 5.0. The commercial catalysts were used in the high temperature shift reactor and the low temperature shift reactor. As steam/carbon ratio increased, the conversion (1-$CO_{out}/CO_{in}$) increased from 93% to 97% at the condition of CO: 65, $H_2$: 30, $CO_2$: 5%. However the conversion decreased with increasing of gas flow and temperature. The gas concentration from LTS was $H_2$: 54.7-60.0, $CO_2$: 38.8-44.9, CO: 0.3-1%.

Comparison of catalytic activity through gas-solid reaction models in CO2 gasification of lignite with alkali metal salts and iron sulfate (알칼리금속염과 철황산염을 촉매로 한 갈탄의 CO2 가스화반응에서 기체-고체 반응모델을 적용한 촉매활성의 비교)

  • Bungay, Vergel C.;Song, Byungho
    • Journal of Energy Engineering
    • /
    • 제23권1호
    • /
    • pp.58-66
    • /
    • 2014
  • Catalytic gasification of a low rank coal- Inner Mongolian lignite has been carried out with carbon dioxide. The gasification reactions were performed in a thermogravimetric analyzer at temperatures of $600^{\circ}C$ to $900^{\circ}C$. The kinetic parameters were evaluated using three different gas-solids reaction models and the prediction ability of each model were compared. Among the models evaluated, the modified volumetric model was found to correlate best both the non-catalytic and catalytic gasification reactions. The theoretical models, homogeneous and shrinking-core models, were found to satisfactorily correlate gasification reactions for the non-catalytic and $FeSO_4$-catalyzed reactions. In case of alkali metal catalysts, the catalytic activity was mostly pronounced at a low temperature of $600^{\circ}C$ and observed to decrease by 50% as the temperature was increased to $700^{\circ}C$, and it remained nearly constant at temperature over $800^{\circ}C$. The order of catalytic activity was found to be: $K_2CO_3$ > $Na_2CO_3$ > $K_2SO_4$ > $FeSO_4$.

Coal gasification with High Temperature Steam (고온(高溫) 수증기(水蒸氣)를 이용한 석탄(石炭) 가스화)

  • Yun, Jin-Han;Kim, Woo-Hyun;Keel, Sang-In;Min, Tai-Jin;Roh, Seon-Ah
    • Resources Recycling
    • /
    • 제16권6호
    • /
    • pp.28-33
    • /
    • 2007
  • Coal is the most abundant energy source and deposited in every area of world. Combustion process with lower efficiency has been mainly used. Therefore, implementation of more efficient technologies, involving gasification, combined cycles and fuel cells, would be a key issue in the plans for more efficient power generation. In these technologies, gasification has been studied for decades. However, coal gasification to high value combustible gas such as hydrogen and carbon monoxide is focused again due to high oil price. The gaseous product, called syngas, can be effectively utilized in a variety of ways ranging from electricity production to chemical industry (as feedstock). In this study, coal gasification with ultra high temperature steam has been performed. The effect of steam/carbon ratio on the produced gas concentrations, gasification rate and additional products like tar, ammonia and cyan compounds has been determined.

A Study on the Water Gas Shift Reaction of RPF Syngas (RPF(Refuse plastic fuel) 합성가스의 수성가스 전환 반응 연구)

  • Roh, Seon Ah
    • Resources Recycling
    • /
    • 제30권6호
    • /
    • pp.12-18
    • /
    • 2021
  • The water-gas shift reaction is the subsequent step using steam for hydrogen enrichment and H2/CO ratio-controlled syngas from gasification. In this study, a water-gas shift reaction was performed using syngas from an RPF gasification system. The water-gas shift using a catalyst was performed in a laboratory-scale tube reactor with a high temperature shift (HTS) and a low temperature shift (LTS). The effects of the reaction temperature, steam/carbon ratio, and flow rate on H2 production and CO conversion were investigated. The operating temperature was 250-400℃ for the HTS system and 190-220℃ for the LTS system. Steam/carbon ratios were between 1.5 and 3.5, and the composition of reactant was CO : 40 vol%, H2 : 25 vol%, and CO2 : 25 vol%. The CO conversion and H2 production increased as the reaction temperature and steam/carbon ratio increased. The CO conversion and H2 production decreased as the flow rate increased due to reduced retention time in the catalyst bed.

Thermal Destruction of Waste Insulating Oil Containing PCBs under High Temperature and Pressurized Conditions

  • Seok, Min-Gwang;Lee, Gang-Woo;Lee, Jae-Jeong;Kim, Min-Choul;Kim, Yang-Do;Jung, Jong-Hyeon;Shon, Byung-Hyun
    • Environmental Engineering Research
    • /
    • 제17권3호
    • /
    • pp.157-165
    • /
    • 2012
  • This experimental study was performed to obtain thermal energy from the combustion of synthetic gas, produced by the pyrolysis of insulating oil containing polychlorinated biphenyls (PCBs) in a high temperature and high pressure reactor. The average synthetic gas generated was $59.67Am^3/hr$ via the steady state gasification of insulating oil waste (20 kg/hr) with average concentrations (standard deviation) of $CO_2$, CO, and $H_2$ in the synthetic gas of $38.63{\pm}3.11%$, $35.18{\pm}1.93%$, and $28.42{\pm}1.68%$, respectively. The concentrations of the PCBs in the transformer insulating oil and synthetic gas after its gasification, and the concentrations of the dioxins that could be produced from the incomplete degradation of PCBs were measured. It was revealed that the PCBs in the insulating oil were composed of the series from tetrachlorobiphenyl to octachlorobiphenyl. However, only the #49, #44, #52, and #47/75/48 congeners were detected from the synthetic gas after gasification of the insulating oil and in the flue gas from the combustor. In conclusion, the experimental conditions suggested in this study were very useful for the appropriate treatment of insulating oil containing PCBs. Also, fuel gas containing CO and $H_2$ can be obtained from the pyrolysis of insulating oil containing PCBs.

Kinetic Study of Coal/Biomass Blended Char-CO2 Gasification Reaction at Various temperature (다양한 온도에서 석탄/바이오매스의 혼합 촤-CO2 가스화 반응특성 연구)

  • Kim, Jung Su;Kim, Sang Kyum;Cho, Jong Hoon;Lee, Si Hoon;Rhee, Young Woo
    • Korean Chemical Engineering Research
    • /
    • 제53권6호
    • /
    • pp.746-754
    • /
    • 2015
  • In this study, we investigated the effects of the temperature on the coal/biomass $char-CO_2$ gasification reaction under isothermal conditions of $700{\sim}900^{\circ}C$ using the lignite(Indonesia Eco coal) with biomass (korea cypress). Ni catalysts were impregnated on the coal by the ion-exchange method. Four kinetic models which are shrinking core model (SCM), volumetric reaction model (VRM), random pore model (RPM) and modified volumetric reaction model (MVRM) for gas-solid reaction were applied to the experimental data against the measured kinetic data. The Activation energy of Ni-coal/biomass, non-catalyst coal/biomass $Char-CO_2$ gasification was calculated from the Arrhenius equation.