• Title/Summary/Keyword: $CO_2$ Gas sensors

Search Result 198, Processing Time 0.022 seconds

$CO_{2}$ sensing characteristics of solid electrolyte gas sensor with the sensing membrane prepared by the mixture of alkali metal carbonate and binder (알카리 금속 탄산염과 결착제의 혼합물을 감지물질로 하는 고체전해질 가스센서의 $CO_{2}$ 감응 특성)

  • Chai, Yu-Sug;Song, Kap-Duk;Kang, Bong-Hwi;Seo, Moo-Gyo;Lee, Duk-Dong
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.111-116
    • /
    • 1998
  • The simple solid electrolyte carbon dioxide sensor with heaters were fabricated by using Li ionic conductor. Two Au electrodes were used for the reference and sensing electrode respectively. Two types of gas sensors, type ( I ) and type (II), were fabricated. Type ( I ) sensor was fabricated by the method of melting and crystallizing alkali metal carbonate at the temperature of $420{\sim}500^{\circ}C$. The sensing membrane of type (II) sensor was formed by the printing method on sensing electrode after metal carbonate was mixed with binder. The response characteristics of sensors fabricated for the carbon dioxide were investigated for a range of $CO_{2}$ concentration from 950 ppm to 9,950 ppm at operating temperature $420^{\circ}C$. Type ( I ) sensor and type (II) sensor showed the sensitivity of 62 mV/decade and 65 mV/decade respectively. The emf/decade of type (II) sensor tested at $420^{\circ}C$ almost followed the theoretical value of Nernst's equation and showed stable response characteristics with the fast response time of $15{\sim}20$ sec. Also type (II) sensor showed excellent stability and reproduction properties for 60 days.

  • PDF

Fundamental Study on the Maintenance Technology for SF6 Gas Condition using Pressure and UHF Sensors (UHF 및 가스센서를 이용한 SF6 가스 상태 감시기술 기초연구)

  • Ahn, Hee-Sung;Cho, Sung-Chul;Eom, Ju-Hong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.2
    • /
    • pp.20-27
    • /
    • 2007
  • [ $SF_6$ ] gas for compacted power facilities has a important role as an insulation gas. It is very blown well that $SF_6$ gas has the superior characteristics as an insulation gas. For reliable operation of SF6-gas-based high and medium voltage equipment it is very important to keep the insulation ability within a safe range. And the experimental and measuring system were implemented. The test chamber designed to endure up to 3 atmospheric pressure. The analysis results of the experimental data shows that positive partial discharge can be detected by discharge current and UHF signal. Additionally it is shown the possibility that $CO_2$ gas sensor of semiconductor type can be detect the variation of $SF_6$ gas condition. The UHF sensor shows good feature to detect the variation of $SF_6$ gas condition for partial discharge and breakdown discharge.

Effectiveness of Real-time Oxygen Control in Fresh Produce Container Equipped with Gas-diffusion Tube (기체확산 튜브 부착 신선 농산물 용기에서의 실시간 산소농도 제어의 효과)

  • Jo, Yun Hee;An, Duck Soon;Lee, Dong Sun
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.19 no.3
    • /
    • pp.119-123
    • /
    • 2013
  • Simplified control logic was devised to fabricate and operate the modified atmosphere (MA) container of fresh produce equipped with gas-diffusion tube whose opening/closing was controlled in response to real time $O_2$ concentration. This is a simplified ramification of the previously developed control logic using both $O_2$ and $CO_2$ concentrations ([$O_2$] & [$CO_2$]). The developed logic was applied to and tested by a container system filled with spinach at $10^{\circ}C$ having optimum MA window of [$O_2$] of 7~10% and [$CO_2$] of 5~10%. It was shown that setting the proper on-off limit (11%) for $O_2$ control based on the assumed relationship $[O_2]+[CO_2]$=21% could attain the desired $CO_2$ concentration just below the upper tolerance limit ($[CO_2]_H$, 10%). The $O_2$ control point can be the lower tolerance limit or adjusted one (21-$[CO_2]_H$) depending on the commodity's MA requirement. The developed logic using single $O_2$ sensor could attain the equilibrated [$O_2$] of 11% with [$CO_2$] of 8~9% which was desired and similar to that of its predecessor ([$O_2$] of 9~10% with [$CO_2$] of 10%) using both $O_2$ and $CO_2$ sensors. Both MA containers (one only with single $O_2$ sensor control and one with $O_2$ and $CO_2$ sensors) could also keep the spinach quality without significant difference between them, but significantly better than perforated control package of air.

  • PDF

An App Visualization design based on IoT Self-diagnosis Micro Control Unit for car accident prevention

  • Jeong, YiNa;Jeong, EunHee;Lee, ByungKwan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.2
    • /
    • pp.1005-1018
    • /
    • 2017
  • This paper proposes an App Visualization (AppV) based on IoT Self-diagnosis Micro Control Unit (ISMCU) for accident prevention. It collects a current status of a vehicle through a sensor, visualizes it on a smart phone and prevents vehicles from accident. The AppV consists of 5 components. First, a Sensor Layer (SL) judges noxious gas from a current vehicle and a driver's driving habit by collecting data from various sensors such as an Accelerator Position Sensor, an O2 sensor, an Oil Pressure Sensor, etc. and computing the concentration of the CO collected by a semiconductor gas sensor. Second, a Wireless Sensor Communication Layer (WSCL) supports Zigbee, Wi-Fi, and Bluetooth protocol so that it may transfer the sensor data collected in the SL to ISMCU and the data in the ISMCU to a Mobile. Third, an ISMCU integrates the transferred sensor information and transfers the integrated result to a Mobile. Fourth, a Mobile App Block Programming Tool (MABPT) is an independent App generation tool that changes to visual data just the vehicle information which drivers want from a smart phone. Fifth, an Embedded Module (EM) records the data collected through a Smart Phone real time in a Cloud Server. Therefore, because the AppV checks a vehicle' fault and bad driving habits that are not known from sensors and performs self-diagnosis through a mobile, it can reduce time and cost spending on accidents caused by a vehicle's fault and noxious gas emitted to the outside.

Preparation of Gas Sensors with Nanostructured SnO2 Thick Films with Different Pd Doping Concetrations by an Ink Dropping Method

  • Yoon, Hee Soo;Kim, Jun Hyung;Kim, Hyun Jong;Lee, Ho Nyun;Lee, Hee Chul
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.3
    • /
    • pp.243-248
    • /
    • 2017
  • Pd-doped $SnO_2$ thick film with a pure tetragonal phase was prepared on patterned Pt electrodes by an ink dropping method. Nanostructured $SnO_2$ powder with a diameter of 10 nm was obtained by a modified hydrazine method. Then the ink solution was fabricated by mixing water, glycerol, bicine and the Pd-doped $SnO_2$ powder. When the Pd doping concentration was increased, the grain size of the Pd-doped $SnO_2$ thick film became smaller. However, an agglomerated and extruded surface morphology was observed for the films with Pd addition over 4 wt%. The orthorhombic phase disappeared even at a low Pd doping concentration and a PdO peak was obtained for a high Pd doping concentration. The crack-free Pd-doped $SnO_2$ thick films were able to successfully fill the $30{\mu}m$ gap of the patterned Pt electrodes by the optimized ink dropping method. The prepared 3 wt% Pd-doped $SnO_2$ thick films showed monoxide gas responses ($R_{air}/R_{CO}$) of 4.0 and 35.6 for 100 and 5000 ppm, respectively.

Heterostructures of SnO2-Decorated Cr2O3 Nanorods for Highly Sensitive H2S Detection (고감도 H2S 감지를 위한 SnO2 장식된 Cr2O3 nanorods 이종구조)

  • Jae Han Chung;Yun-Haeng Cho;Junho Hwang;Su hyeong Lee;Seunggi Lee;See-Hyung Park;Sungwoo Sohn;Donghwi Cho;Kwangjae Lee;Young-Seok Shim
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.40-47
    • /
    • 2024
  • The creation of vertically aligned one-dimensional (1D) nanostructures through the decoration of n-type tin oxide (SnO2) on p-type chromium oxide (Cr2O3) constitutes an effective strategy for enhancing gas sensing performance. These heterostructures are deposited in multiple stages using a glancing angle deposition technique with an electron beam evaporator, resulting in a reduction in the surface porosity of the nanorods as SnO2 is incorporated. In comparison to Cr2O3 films, the bare Cr2O3 nanorods exhibits a response 3.3 times greater to 50 ppm H2S at 300℃, while the SnO2-decorated Cr2O3 nanorods demonstrate an eleven-fold increase in response. Furthermore, when subjected to various gases (CH4, H2S, CO2, H2), a notable selectivity toward H2S is observed. This study paves the way for the development of p-type semiconductor sensors with heightened selectivity and sensitivity towards H2S, thus advancing the prospects of gas sensor technology.

Gas sensing properties of $LaFeO_3$ thin films fabricated by RF magnetron sputtering method (RF Magnetron Sputtering 법으로 제조된 $LaFeO_3$ 박막의 가스감지 특성)

  • Jang, Jae-Young;Ma, Dae-Young;Park, Ki-Cheol;Kim, Jeong-Gyoo
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.5
    • /
    • pp.357-364
    • /
    • 2000
  • The structural, electrical and gas sensing characteristics of $LaFeO_3$ thin films fabricated by r.f. magnetron sputtering method on $Al_2O_3$ substrates were investigated. (121) domonant crystalline plane was observed for the films heat-treated at above $600^{\circ}C$ and gas sensing properties showed p-type semiconductor behaviors. Gas sensing characteristics of the $LaFeO_3$ thin films was studied as a function of film thicknesses and heat treatment temperatures. While the variation of the film thickness showed a little effect on the sensitivity, the heat treatment temperature was critical to the sensitivity. The thin films with thickness of 400 nm heat-treated at $800^{\circ}C$ showed the sensitivity of 400% for 5000ppm CO and 60% for 350ppm $NH_3$ at the working temperature of $300^{\circ}C$.

  • PDF

Preparation of the Proteus vulgaris Bacterial Electrodes for the Determination of Urea and Their Application (요소 정량을 위한 Proteus vulgaris 박테리아 전극의 개발과 그 응용)

  • Gwon-Shik Ihn;Bong-Weon Kim;Sohn Moo-Jeong;Ihn-Tak Kim
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.323-332
    • /
    • 1988
  • The bacteria containing urease convert each molecule of urea into two molecules of ammonia and one molecule of carbon dioxide gas. Bacterial electrodes have been constructed by immobilizing the Proteus vulgaris on an ammonia and a carbon dioxide gas-sensors, and were investigated for the effects of pH, temperature, buffer solution, bacterial amounts and interferences, and life time. NH3-bacterial electrode based on ammonia gas-sensor had linearity in the range of $7.0{\times}10^{-4}\;-\;3.0{\times}10^{-2}$M urea in pH 7.4, 0.05M phosphate buffer at $25^{\circ}C$ with a slope of 116.7 mV/decade. While $CO_{2-}$bacterial electrode based on carbon dioxide gas-sensor bad linearity in the range of $7.0{\times}10^{-4}\;-\;5. 0{\times}10^{-2}$M urea in pH 7.0, 0.1M phosphate buffer at $30^{\circ}C$with a slope of $45.4{\times}45.7mV/decade$. As the clinical application, urea in urine was determined by these devices and this result was compared with spectrophotometric method. Consequently, these electrodes could be used for the analysis of many samples because of simplicity, rapidity and convenience of the experimental procedure.

  • PDF

Development of Methane Gas Leak Detector Using Mid-infrared Ray Sensors with $3.2\;{\mu}m$ ($3.2\;{\mu}m$ 중적외선 센서를 이용한 메탄가스누출검지기의 개발)

  • Park, Gyou-Tae;Lyu, Keun-Jun;Han, Sang-In;Oh, Jeong-Seok;Kim, Ji-Yoon;Ahn, Sang-Guk;Yoon, Myung-Seop;Kwon, Jeong-Rock
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.2
    • /
    • pp.48-52
    • /
    • 2008
  • According to extremely industrial growth, gas facilities, equipments and chemical plants are gradually increased due to incremental demands of annual amount of gases. The safety management of gases, however, is still far from their requirements. Methane, the principal ingredient of natural gas, is inflammable and explosive and is much used in factories and houses. Therefore, these gas safety management is essential. So, we, with a program of the gas safety management, hope to develop the detection system of methane gas leak using mid-infrared ray LED and PD with $3.2\;{\mu}m$. The cryogenic cooling device is indispensible at laser but needless at LED driven on the room temperature if manufacturing optical sensor with $3.2\;{\mu}m$. It, consequently, is not only possible to implement for subminiature and portable type but also able to speedily detect methane of extremely small quantities because the $CH_4$ absorption intensity at $3.2\;{\mu}m$ is stronger than that at $1.67\;{\mu}m$. Our objective of research is to prevent gas leak accidents from occurring previously and to minimize the extent of damage from them.

  • PDF

Estimation of Ventilation Rates in Korean Homes Using Time-activity Patterns and Carbon Dioxide (CO2) Concentration (시간활동양상 및 이산화탄소 농도를 이용한 한국 주택 환기량 추정)

  • Park, Jinhyeon;Ryu, Hyeonsu;Heo, Jung;Cho, Mansu;Yang, Wonho
    • Journal of Environmental Health Sciences
    • /
    • v.45 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • Objectives: The purpose of this study was to estimate the ventilation rate of residential homes in Korea through tracer gas methods using indoor and outdoor concentrations of carbon dioxide ($CO_2$) and $CO_2$ generation rates from breathing. Methods: In this study, we calculated the number of occupants in a home by time through data on the average number of people per household from the Korean National Statistical Office and also measured the amount of $CO_2$ generation by breathing to estimate the indoor $CO_2$ generation rate. To estimate the ventilation rate, several factors such as the $CO_2$ generation rate and average volume of residential house provided by the Korean National Statistical Office, indoor $CO_2$ concentrations measured by sensors, and outdoor $CO_2$ concentrations provided by the Korea Meteorological Administration, were applied to a mass balance model for residential indoor environments. Results: The average number of people were 2.53 per household and Koreans spend 61.0% of their day at home. The $CO_2$ generation rate from breathing was $13.9{\pm}5.3L/h$ during sleep and $15.1{\pm}5.7L/h$ in a sedentary state. Indoor and outdoor $CO_2$ concentrations were 849 ppm and 407 ppm, respectively. The ventilation rate in Korean residential houses calculated by the mass balance model were $42.1m^3/h$ and 0.71 air change per hour. Conclusions: The estimated ventilation rate tended to increase with an increase in the number of occupants. Since sensor devices were used to collect data, sustainable data could be collected to estimate the ventilation rate of Korean residential homes, which enables further studies such as on changes in the ventilation rate by season resulting from the activities of occupants. The results of this study could be used as a basis for exposure and risk assessment modeling.