• Title/Summary/Keyword: $CO_2$ Flux

Search Result 645, Processing Time 0.025 seconds

Preparation of PVDF Hollow Fiber Membrane via TIPS (Thermally Induced Phase Separation) and Stretching (열유도 상분리와 연신공정을 이용한 PVDF 중공사막의 제조)

  • Park, Minsoo;Kim, Jinho;Jang, Moonseog;Kim, Sung Soo
    • Membrane Journal
    • /
    • v.24 no.2
    • /
    • pp.158-166
    • /
    • 2014
  • In this research, microporous and bicontinuous poly vinylidene fluoride(PVDF) hollow fiber membranes were prepared via hybrid process of the thermally induced phase separation (TIPS) and stretching method. The mechanism of the membrane preparation is based on liquid-liquid phase separation. The final membranes have characteristic structures which have both bicontinuous and fibrillar morphology by applying the stretching method. They showed quite different structure when compared with the spherulitic or nodular structure from S/L TIPS and bicontinuous structure from L/L TIPS. At first, PVDF hollow fiber precursors were prepared via TIPS method using various kind of diluent mixtures. We used gamma-butyrolacton, dimethyl phthalate (DMP), diethyl phthalate (DEP), dibutyl phthalate (DBP) as diluents. We could make hollow fiber membranes which had porous outer surface or dense outer surface by controling the parameters such as cooling conditions, PVDF concentration and the ratio of diluent mixtures. Finally, these hollow fiber were stretched at room temperature and diluents were extracted by ethanol. Effects of the stretching ratio on the membrane morphology were investigated using scanning electron microscope (SEM), and its effects on water flux, porosity, pore size, roughness and tensile strength were examined.

Skin Penetration and Localization Characteristics of Lipogel Containing Ascorbyl Palmitate (아스코르빈산 팔미테이트를 함유한 리포겔의 피부 투과 및 잔류 특성)

  • Lee, Sang-Kil;Woo, Hye-Seoung;Lee, Yeon-Ah;Kwon, Yong-Nam;Choi, Young-Wook
    • Journal of Pharmaceutical Investigation
    • /
    • v.31 no.4
    • /
    • pp.225-232
    • /
    • 2001
  • The present study was carried out to observe the effect of liposome dispersed gel formulation (Lipogel) on topical delivery of ascorbyl palmitate (AsP). Neutral and negatively charged MLV liposomes containing AsP were prepared with dimyristoylphosphadtidylcholine (DMPC) and dicetyl phosphate (DCP), and dispersed to poloxamer gel matrix. In the hydrolysis study in rat's skin homogenates, AsP hydrolyzed to ascorbic acid (AsA) according to the first-order kinetics with the rate constant of $2.46{\times}10^{-2}\;min^{-1}$. In the passive skin penetration study using Franz diffusion cell, lipogel systems exhibited the greater values in the flux $(J_s)$ and the amount penetrated $(Q_p)$ compared to control hydrogels containing diethyleneglycol monoethyl ether $(Transcutol^{\circledR})$ as a solubilizing agent and a penetration enhancer for AsP. The total amount penetrated $(Q_{Total})$, which is expressed as a summation of $Q_P\;and\;Q_L$, for lipogel system was about 1.4 times higher in average than that of control hydrogel. However the amount localized in the skin $(Q_L)$ was similar in both formulations. As a result, lipogel system enhanced the skin penetration of AsP, possibly due to the increase in local concentration of AsP by preferential adsorption of liposome to the skin and the enhancing effect of phospholipid in liposome composition. Moreover it was expected that the penetrated AsP would generate AsA during skin penetration by the skin esterase. In conclusion, lipogel formulation was considered as a good candidate for topical delivery of AsP.

  • PDF

Applicability of Climate Change Impact Assessment Models to Korean Forest (산림에 대한 기후변화 영향평가 모형의 국내 적용성 분석)

  • Kim, Su-na;Lee, Woo-Kyun;Son, Yowhan;Cho, Yongsung;Lee, Mi-Sun
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.1
    • /
    • pp.33-48
    • /
    • 2009
  • Forests store carbon dioxide ($CO_2$), one of the major factors of global warming, in vegetation and soils through photosynthesis process. In addition, woods deposit $CO_2$ for a long term until the harvested wood is decomposed or burned, and deforested areas could be expanded the carbon sinks through reforestation. Forests are a lso able to decrease temperature through transpiration and contribute to control the micro climate in global climate systems. Consequently, forests are considered as one of major sinks of greenhouse gases for mitigating global warming. It is very important to develop a Korea specific forest carbon flux model for preparing adaptation measures to climate change. In this study, we compared the climate change impact models in forests developed in foreign countries and analyzed the applicability of the models to Korean forest. Also we selected models applicable to Korean forest and suggested approaches for developing Korean specific model.

Carbon Dioxide Fluctuation in Suncheon Bay Measured by Infrared and Ultrasonic sensors (적외선과 초음파 센서로 측정한 순천만 이산화탄소 변동)

  • Kim, Sang-Jin;Kim, Min-Seong;Lee, Kyung-Hun;Kwon, Byung-Hyuk;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.1
    • /
    • pp.157-164
    • /
    • 2021
  • Wind and temperature were measured with a three-dimensional ultrasonic anemometer and the carbon dioxide concentration was measured using an infrared sensor in the tidal flat of Suncheon Bay. In general, as the temperature increases, the concentration of carbon dioxide increases, and as the temperature decreases, the carbon dioxide also decreases in the atmosphere. However, since photosynthesis declined immediately after the sunset, the concentration of carbon dioxide increased as the temperature decreased. In addition, near the high tide when the tidal flat is covered with seawater, the atmospheric turbulence was strong despite an increase in temperature, resulting in a decrease in carbon dioxide concentration. It is necessary to quantitatively evaluated the effects of photosynthesis, respiration and atmospheric turbulence on the change of carbon dioxide concentration over tidal flat ecosystems.

Carbon balance and net ecosystem production in Quercus glauca forest, Jeju Island in South Korea

  • Jeong, Heon Mo;You, Young Han;Hong, Seungbum
    • Journal of Ecology and Environment
    • /
    • v.46 no.3
    • /
    • pp.250-258
    • /
    • 2022
  • Background: To assess the carbon sequestration capacity and net ecosystem productivity (NEP) of Quercus glauca forests, we analyzed the net primary productivity (NPP), carbon storage, and carbon emission of soil in a Q. glauca forest on Jeju Island (South Korea) from 2016 to 2018. Results: The average carbon stock in the above- and below-ground plant biomass was 223.7 Mg C ha-1, while the average amount of organic carbon fixed by photosynthesis was 9.8 Mg C ha-1 yr-1, and the average NPP was 9.6 Mg C ha-1 yr-1. Stems and branches contributed to the majority of the above- and below-ground standing biomass and NPP. The average heterotrophic carbon emission from the soil was 8.7 Mg C ha-1 yr-1, while the average NEP was 1.1 Mg C ha-1 yr-1. Although the carbon stock, carbon absorption, and soil respiration values were higher than those reported in other oak forests in the world, the NEP was similar or lower. Conclusions: These results indicator that Q. glauca forests perform the role of a large carbon sink through the CO2 absorption in the plants in terms of carbon balance. And it is judged to be helpful as data for assessment of carbon storage and flux in the forests and mitigation of elevated CO2 in the atmosphere.

Photosynthetic characteristics and growth analysis of Angelica gigas according to different hydroponics methods (당귀의 광합성 특성과 수경재배 방식에 따른 생장 분석)

  • Park, Jong-Seok;Kim, Sung-Jin;Kim, Hong-Ju;Choi, Jong-Myung;Lee, Gong-In
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.4
    • /
    • pp.321-326
    • /
    • 2014
  • The aim of this study was to investigate which hydroponic system is the optimum for growth and photosynthetic characteristics of Angelica gigas during experiment. Angelica gigas 'Manchu' were sowed and managed under a growth room chamber. The environmental conditions (temperature $22^{\circ}C/18^{\circ}C$ (day/night), relative humidity 50-70%, photosynthetic photon flux density (PPFD) $120{\pm}6{\mu}mol\;m^{-2}s^{-1}$) were maintained for 3 weeks. Forty eight seedlings with 4-5 leaves were transplanted in deep flow technique (DFT), substrate, and spray culture systems [culture bed: 800 (L) ${\times}$ 800 (W) ${\times}$ 400 mm(H)] under $150{\pm}5{\mu}mol\;m^{-2}s^{-1}$ PPFD provided with fluorescence lamps and cultivated for 11 weeks. At the end of the experiment, fresh and dry weights, leaf lenghth and width, SPAD, root fresh, and dry weights, and root volume of Anglica gigas were measured. Photosynthetic rate of Anglica gigas were measured with portable photosynthesis systems to investigate optimum PPFD, $CO_2$ concentration, and air temperature conditions. Fresh and dry weights of Anglica gigas grown in substrate were significantly greater than DFT-treated, but there were not significant with spray treatment. Leaf photosynthesis of Anglica gigas showed the tendency to sharply increase as PPFD was increased from 50 to $200{\mu}mol\;m^{-2}s^{-1}$. Though $CO_2$ saturation point was around $1000-1200{\mu}mol\;mol^{-1}$, increase in air temperature from 16 to $26^{\circ}C$ did not quite affect photosynthesis of Anglica gigas. In conclusion, Anglica gigas may be optimally cultivated with a spray culture system as air temperature, PPFD, and $CO_2$ concentration for environment are controlled at $20{\pm}3^{\circ}C$, $150{\mu}mol\;m^{-2}s^{-1}$, and around $1000{\mu}mol\;mol^{-1}$ for mass production.

Estimation and Mapping of Methane Emissions from Rice Paddies in Korea: Analysis of Regional Differences and Characteristics (전국 논에서 발생하는 메탄 배출량의 산정 및 지도화: 지역 격차 및 특성 분석)

  • Choi, Sung-Won;Kim, Joon;Kang, Minseok;Lee, Seung Hoon;Kang, Namgoo;Shim, Kyo-Moon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.1
    • /
    • pp.88-100
    • /
    • 2018
  • Methane emissions from rice paddies are the largest source of greenhouse gases in the agricultural sector, but there are significant regional differences depending on the surrounding conditions and cultivation practices. To visualize these differences and to analyze their causes and characteristics, the methane emissions from each administrative district in South Korea were calculated according to the IPCC guidelines using the data from the 2010 Agriculture, Forestry and Fisheries Census, and then the results were mapped by using the ArcGIS. The nationwide average of methane emissions per unit area was $380{\pm}74kg\;CH_4\;ha^{-1}\;yr^{-1}$. The western region showed a trend toward higher values than the eastern region. One of the major causes resulting in such regional differences was the $SF_o$ (scaling factor associated with the application of organic matter), where the number of cultivation days played an important role to either offset or deepen the differences. Comparison of our results against the actual methane emissions data observed by eddy covariance flux measurement in the three KoFlux rice paddy sites in Gimje, Haenam and Cheorwon showed some differences but encouraging results with a difference of 10 % or less depending on the sites and years. Using the updated GWP (global warming potential) value of 28, the national total methane emission in 2010 was estimated to be $8,742,000tons\;CO_2eq$ - 13% lower than that of the National Greenhouse Gas Inventory Report (i.e., $10,048,000tons\;CO_2eq$). The administrative districts-based map of methane emissions developed in this study can help identify the regional differences, and the analysis of their key controlling factors will provide important scientific basis for the practical policy makings for methane mitigation.

Hydrogen Permeation Performance of Pd, Pd/Cu Membranes Manufactured through Electroless Plating (무전해 도금을 이용해 제작한 Pd, Pd/Cu 분리막의 수소 투과 성능)

  • Jeong In, Lee;Min Chang, Shin;Xuelong, Zhuang;Jae Yeon, Hwang;Chang-Hun, Jeong;Jung Hoon, Park
    • Membrane Journal
    • /
    • v.32 no.6
    • /
    • pp.456-464
    • /
    • 2022
  • Hydrogen permeation performance was analyzed by manufacturing Pd and Pd-Cu membranes through electroless plating. As a support for the Pd and Pd-Cu membranes, α-Al2O3 ceramic hollow fiber were used. Pd-Cu membrane was manufactured through sequential electroless plating, and then annealing was performed at 500°C, for 18 h in a hydrogen atmosphere to make Pd and Cu alloy. After annealing, the Pd-Cu membrane confirmed that the alloy was formed through EDS (Energy Dispersive X-ray Spectroscopy) and XRD (X-ray Diffraction) analysis. In addition, the thickness of the Pd and Pd-Cu plating layers were measured to be about 3.21 and 3.72 µm, respectively, through SEM (Scanning Electron Microscope) analysis. Hydrogen permeation performance was tested for hydrogen permeation in the range of 350~450°C and 1~4 bar in hydrogen single gas and mixed gas (H2, N2). In a single hydrogen gas, Pd and Pd-Cu membranes have flux of up to 54.42 and 67.17 ml/cm2⋅ min at 450 °C and 4 bar. In the mixed gas, it was confirmed that the separation factors of 1308 and 453 were obtained under the conditions of 450 °C and 4 bar.

Fouling Mitigation for Pressurized Membrane of Side-Stream MBR Process at Abnormal Operation Condition (가압식 분리막을 이용한 Side-Stream MBR 공정의 비정상 운전조건에서 막 오염 저감)

  • Ko, Byeong-Gon;Na, Ji-Hun;Nam, Duck-Hyun;Kang, Ki-Hoon;Lee, Chae-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.6
    • /
    • pp.323-328
    • /
    • 2016
  • Pressurized membrane used for side-stream MBR process requires fouling control strategy both for normal and abnormal operation conditions for stable operation of the facilities. In this study, $85m^3/day$ of pilot-scale side-stream MBR process was constructed for the evaluation of fouling mitigation by air bubble injection into the membrane module. In addition, fouling phenomena at abnormal operation conditions of low influent and/or loading rate were also investigated. Injection of air bubble was found to be effective in delaying transmembrane pressure (TMP) increase mainly due to scouring effect on the membrane surface, resulting in expanded filtration cycle at a high flux of $40L/m^2{\cdot}h$ (LMH). At abnormal operation condition, injection of PACl (53 mg/L as Al) into the bioreactor showed 19% reduction of TMP increase. However, inhibition of nitrifying bacteria by continuous PACl injection was observed from batch experiments. In contrast, injection of powdered activated carbon (PAC, 0.6 g/L) was able to maintain the initial TMP of $0.2kg/cm^2$ for 5 days at the abnormal conditions. It may have been caused from the adsorption of extracellular polymeric substances (EPS), which was known to be excessively released during growth inhibition condition and act as the major foulants in MBR operations.

Assessment of the Habitability for a Cabinet Fire in the Main Control Room of Nuclear Power Plant using Sensitivity Analysis (민감도 분석을 이용한 원전 주제어실의 케비닛 화재에 대한 거주성 평가)

  • Han, Ho-Sik;Lee, Jae-Ou;Hwang, Cheol-Hong;Kim, Joosung;Lee, Sangkyu
    • Fire Science and Engineering
    • /
    • v.31 no.2
    • /
    • pp.52-60
    • /
    • 2017
  • Numerical simulations were performed to evaluate the habitability of an operator for a cabinet fire in the main control room of a nuclear power plant presented in NUREG-1934. To this end, a Fire Dynamics Simulator (FDS), as a representative fire model, was used. As the criteria for determining the habitability of operator, toxic products, such as CO, were also considered, as well as radiative heat flux, upper layer temperature, smoke layer height, and optical density of smoke. As a result, the probabilities of exceeding the criteria for habitability were evaluated through the sensitivity analysis of the major input parameters and the uncertainty analysis of fire model for various fire scenarios, based on V&V (Verification and Validation). Sensitivity analyses of the maximum heat release rate, CO and soot yields, showed that the habitable time and the limit criterion, which determined the habitability, could be changed. The present methodology will be a realistic alternative to enhancing the reliability for a habitability evaluation in the main control room using uncertain information of cabinet fires.