• Title/Summary/Keyword: $CO_2$ 감축

Search Result 345, Processing Time 0.026 seconds

Study on the Reduction of NPS Pollution and GHG Emission from Paddies with SRI Methods (SRI 방법을 적용한 논에서의 비점오염원 및 온실가스 저감효과)

  • Park, Woon-Ji;Lee, Su-In;Yun, Dong-Koun;Kim, Gun-Yeob;Choi, Joong-Dae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.440-440
    • /
    • 2012
  • 본 연구에서는 수질관리 및 기후변화(온실가스 저감) 등에 부응할 수 있는 SRI 벼재배 방법을 국내 논에 적용하여 농업비점오염원과 온실가스 저감효과를 측정하고 비교하여 SRI의 환경개선효과를 평가하고자 하였다. 시험포는 대조구인 상시담수처리구(관행, 재식거리 $30{\times}15cm$)와 SRI 물관리 처리구로 조성하였다. 각 시험포에는 관개배수시설 및 관개량을 측정할 수 있는 수도계량기, 유출량 측정을 위한 플륨 및 수위계 그리고 온실가스(메탄 및 이산화질소)를 측정하기 위한 아크릴재질의 Chamber를 설치하였다. 관행 및 SRI 시험포에 이앙할 모의 재배품종으로 오대벼를 공시하고 모든 시험포의 경우 1주당 3-5본씩 기계이앙을 실시하였으며, 물관리를 제외한 시비와 제초 등의 영농관리는 동일하게 수행하였다. 메탄($CH_4$)과 아산화질소($N_2O$)는 주 2회, 오전 9시 12시에 60 mL 주사기로 주기적으로 시료를 채취하여 GC로 분석하였다. 그리고 관개기간동안 관개량, 강우량 그리고 강우 유출량을 측정하고 수질시료를 채취하여 오염부하를 산정하였다. SRI 시험포의 SS, $COD_{Cr}$, $COD_{Mn}$, BOD, TN, TP의 총 오염부하량은 각각 583 kg/ha, 210.8 kg/ha, 70.1 kg/ha, 30.7 kg/ha, 56.1 kg/ha, 3.55 kg/ha로서 관행 시험포의 오염부하량에 비해 27.1~46.0%의 오염물질 저감 효과를 보였다. 그리고 각 시험포별 온실가스 메탄과 아산화질소의 총 배출량을 지구온난화잠재력(GWP)으로 환산하여 이산화탄소($CO_2$) 기준으로 산정한 결과, 관행은 14.2 톤/ha 그리고 SRI 물관리 처리구 4.0 톤/ha로 관행 대비 SRI 처리구에서 71.8%의 온실가스 감축효과를 나타내었다. 따라서 SRI 벼재배기술은 논 비점오염부하 및 온실가스 저감을 위한 효과적인 최적영농관리방법인 것으로 판단된다.

  • PDF

Physical Properties of Photosynthetic Cyanobacteria Applied Porous Concrete by CO2 Sequestration (광합성 남세균을 도포한 투수 콘크리트의 이산화탄소 고정에 의한 물성 변화)

  • Indong Jang;Namkon Lee;Jung-Jun Park;Jong-Won Kwark;Hoon Moon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.416-424
    • /
    • 2023
  • Concrete emits a large amount of carbon dioxide throughout its life cycle, and due to the societal demand for carbon dioxide reduction, research on storing carbon dioxide in concrete in the form of minerals is ongoing. In this study, cyanobacteria, which absorb carbon dioxide through photosynthesis and fix it as calcium carbonate, were applied to a porous concrete substrate, and the changes in the properties of the concrete substrate due to their special environmental curing condition were analyzed. The results showed that the calcium carbonate precipitation by the microorganisms was concentrated in the light-exposed surface area, and most of the precipitation occurred in the cement paste part, not in the aggregate. This microbially induced calcium carbonate precipitation enhanced the mechanical performance of the paste and improved the overall compressive strength as the curing age progressed. In addition, the increase in microbial biofilm and calcium carbonate improved the pore structure, which influenced the reduction in water permeability.

Development of Hole Expansion Test for Sheet Materials Using Pattern-Recognition Technique (형태 인식 기술을 이용한 판재의 홀 확장성 평가 시스템 개발)

  • Jang, Seung Hyun;Kim, Chan Il;Yang, Seung Han;Kim, Young Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.2
    • /
    • pp.161-168
    • /
    • 2013
  • Nowadays, one of the most interested area of automobile industry is the production of vehicle which has collision safety and ability to produce less amount of $CO_2$. The achievement of such a dual performance is done by choosing the materials like dual phase steel, ferrite bainite steel, etc. These steels have been used in automotive chassis and body parts, and also used to be formed by hole flanging to meet the goal of strength and design requirement. The formability of sheet material was experimented by hole expansion test and the judgement relies on human eye and his experience. This manual judgement involves many errors and large deviation. This paper develops the automatic crack recognition system which finds a crack based on CCD image to complement the problem of the current method depending on human's sense.

A Study on Reset of Examination Criteria for Energy Use Plan by Projet Sector (사업 분야별 에너지사용계획 검토기준 재설정에 관한 연구)

  • Suh, Kwang-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6581-6589
    • /
    • 2013
  • This study reset the Examination Criteria for Energy Use Plan by the project sector so that the Consultation about Energy Use Plan would play an effective role in reaching the National Energy Policy Issues, and to prevent complaints from the superintendent of the project & agent engaged in the project. To achieve this aim, consultation case analysis was carried out from 2001 to 2010 and the National Energy Master Plan was reviewed. The predicted effect of energy savings calculated by reset Examination Criteria on the $1^{st}$ energy demand target at 2030 was 2.5%, the effect of new and renewable energy utilization on a new and renewable energy supply target at 2030 was 3% and the rate of $CO_2$ reduction to greenhouse gas emission BAU at 2020 was 1.1%.

Characterization of Greenhouse Gas by Emission Regions and Sectors using GHG-CAPSS(2006) (GHG-CAPSS를 이용한 지역별, 부문별 온실가스 배출 특성 분석(2006))

  • Lee, Sue-Been;Lim, Jae-Hyun;Lyu, Young-Sook;Yeo, So-Young;Hong, You-Deog
    • Journal of Climate Change Research
    • /
    • v.2 no.2
    • /
    • pp.69-77
    • /
    • 2011
  • While increased use of energy and fossil fuel in the recent years could worsen air quality and climate change, only few studies have been conducted on estimation of greenhouse gas emissions and characterization of emission types by sectors and regions in Korea. In this study, greenhouse gases emissions based on resions(Si, Gun, Gu) and emitted sectors(industry, transport, cemmercial and institutional, residential, waste, agriculture, others) were investigated using GHG-CAPSS(Greenhouse GasClean Air Policy Support System) developed to support to national and regional greenhouse gases reduction strategies. GHG-CAPSS follows IPCC(Intergovernmental Panel on Climate Change) Guideline methodology to categorize the emission sources and estimation of greenhouse gases using bottom-up approach. Estimated total greenhouse gases emissions were 588,011 thousand tons as $CO_2$ equivalent. Industry(50.1%) sector exhibited the highest portion followed by transport(17.6%), commercial and institutional(12.6%), residential(12.6%), waste(2.6%), agriculture(2.5%). Based on regional estimation, Gyeonggi(14.9%) demonstrated the highest emitted greenhouse gases among big cities followed by Jeonnam(12.4%), Gyeongbuk(11.0%), Ulsan(9.2%) and Seoul(8.9%).

Environmental Impacts Assessment of Elementary School Buildings and Establishment of the Reference Target using Life Cycle Assessment Model (전과정평가 모델을 이용한 초등학교 건축물 환경영향 평가 및 비교기준 수립)

  • Ji, Changyoon;Hong, Taehoon;Jeong, Jaewook
    • Korean Journal of Construction Engineering and Management
    • /
    • v.16 no.3
    • /
    • pp.49-58
    • /
    • 2015
  • In order to determine how much a new green building reduce the environmental impacts, it is necessary to establish the reference target for comparison. Therefore, this study aims to establish the reference target by evaluating the environmental impacts of existing buildings. To ensure this end, this study evaluated the environmental impacts(Global warming potential, ozone layer depletion potential, acidification potential, eutrophication potential, photochemical ozone creation potential, and abiotic depletion potential) of 17 existing elementary school buildings, which are located in Seoul, Busan, Daegu, and Gwangju, by using the hybrid LCA model. As a result, the environmental impacts of the case buildings were clearly distinguished in different regions. Therefore, this study presented the reference targets which are appropriate to each region. For example, the reference targets for global warming potential, which can be used in Seoul, Busan, Daegu, and Gwangju, are 3.76E+03, 1.90E+03, 2.63E+03, $2.81E+03kg-CO_2\;eq./m^2$, respectively. The presented reference targets are expected to be useful for understanding how much environmental impacts can be reduced when a new green school building is constructed.

Characteristics of the Carbon Capture and Utilization System in Methanol Fuel Propulsion Ships Based on the Hydrogen Fuel Cell Hybrid System (수소 연료전지 하이브리드 시스템 기반 메탄올 연료추진 선박에서 CCU 적용에 따른 시스템 특성 분석)

  • YoonHo Lee;JunHo Kim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.2
    • /
    • pp.239-251
    • /
    • 2024
  • In this study, a hydrogen fuel cell process based on methanol was developed to reduce greenhouse gas emissions. In Case1, the methanol fuel engine system was designed to investigate the emission of exhaust gas when methanol was supplied as fuel instead of gasoline to the engine. In Case2, a hydrogen fuel cell system was designed by adding a methanol reforming system to Case1. This hybrid system produced gray hydrogen and combined the output of the engine and fuel cell to drive the ship. However, gray hydrogen emits carbon in the process of producing hydrogen. To address this problem, a carbon capture and utilization (CCU) system was added to Case3. The CO2 of the flue gas discharged from Case2 was synthesized with gray hydrogen to produce blue methanol. The results of the case studies revealed that the optimal operating conditions were 220 ℃, 500 kPa, SCR = 1.0, and flow ratio = 0.7. The system of Case3 reduced carbon emissions by 42% compared with that Case1. Thus, the hybrid system of Case3 could considerably reduce the ship's CO2 emissions.

Study on the High Frequency Heat Treatment Characteristics with the Distance between Coil and SCM440 Parts (고주파 열처리 코일과 피가열물 사이 간극에 따른 SCM440 강의 고주파 열처리 특성에 관한 연구)

  • Kim, Dae-Wan;Choi, Jee-Seok;Han, Chang-Won;Lee, Moo-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.1-7
    • /
    • 2017
  • This study investigates the high-frequency heat treatment characteristics with the distance between a coil and SCM440 parts for an automobile. Global automobile makers are focusing on research to develop high-performance automobiles with improved fuel efficiency and lower emissions in accordance with consumer demand and environmental policies. However, most research on high-frequency heat treatment has been experimental, and it is very difficult to obtain high-frequency heat treatment conditions for a specific product. Therefore, all the conditions of high-frequency heat treatment except the distance between a coil and SCM440 parts were kept the same. As a result, the optimized distance between the coil and SCM440 parts was observed to be 1-2 mm. When the distance between the coil and SCM440 parts was over 3 mm, the effective case hardness depth and total case hardness depth did not satisfy the standards.

A Study on Fuel Quality Characteristics of F-T Diesel for Production of BTL Diesel (BTL 디젤 생산을 위한 F-T 디젤의 연료적 특성 연구)

  • Kim, Jae-Kon;Jeon, Cheol-Hwan;Yim, Eui-Soon;Jung, Choong-Sub;Lee, Sang-Bong;Lee, Yun-Je;Kang, Myung-Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.450-458
    • /
    • 2012
  • In order to reduce the effects of greenhouse gas (GHG) emissions, the South Korean government has announced a special platform of technologies as part of an effort to minimize global climate change. To further this effort, the Korean government has pledged to increase low-carbon and carbon neutral resources for biofuel derived from biomass to replace fossil and to decrease levels of carbon dioxide. In general, second generation biofuel produced form woody biomass is expected to be an effective avenue for reducing fossil fuel consumption and greenhouse gas (GHG) emissions in road transport. It is important that under the new Korean initiative, pilot scale studies evolve practices to produce biomass-to-liquid (BTL) fuel. This study reports the quality characteristics of F-T(Fischer-Tropsch) diesel for production of BTL fuel. Synthetic F-Tdiesel fuel can be used in automotive diesel engines, pure or blended with automotive diesel, due to its similar physical properties to diesel. F-T diesel fuel was synthesized by Fischer-Tropsch (F-T) process with syngas($H_2$/CO), Fe basedcatalyst in low temperature condition($240^{\circ}C$). Synthetic F-T diesel with diesel compositions after distillation process is consisted of $C_{12}{\sim}C_{23+}$ mixture as a kerosine, diesel compositions of n-paraffin and iso-paraffin compounds. Synthetic F-T diesel investigated a very high cetane number, low aromatic composition and sulfur free level compared to automotive diesel. Synthetic F-T diesel also show The wear scar of synthetic F-T diesel show poor lubricity due to low content of sulfur and aromatic compounds compared to automotive diesel.

Micro-Hydropower System with a Semi-Kaplan Turbine for Sewage Treatment Plant Application: Kiheung Respia Case Study (하수처리장 적용을 위한 Semi-카플란 수차가 장착된 마이크로수력발전 시스템: 기흥레스피아 사례)

  • Chae, Kyu-Jung;Kim, Dong-Soo;Cheon, Kyung-Ho;Kim, Won-Kyoung;Kim, Jung-Yeon;Lee, Chul-Hyung;Park, Wan-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.5
    • /
    • pp.363-370
    • /
    • 2013
  • Small scale hydropower is one of most attractive and cost-effective energy technologies for installation within sewage treatment plants. This study was conducted to evaluate the potential of a semi-kaplan micro-hydropower (MHP) system for application to sewage treatment plants with high flow fluctuations and a low head. The semi-kaplan MHP is equipped with an adjustable runner blade, and is without a guide vane, so as to reduce the incidence of mechanical problems. A MHP rating 13.4 kWp with a semi-kaplan turbine has been considered for Kiheung Respia sewage treatment plant, and this installation is estimated to generate 86.8 MWh of electricity annually, which is enough to supply electricity to over 25 households, and equivalent to an annual reduction of 49 ton $CO_2$. The semi-kaplan turbine showed a 90.2% energy conversion efficiency at the design flow rate of 0.35 $m^3/s$ and net head of 4.7 m, and was adaptable to a wide range of flow fluctuations. Through the MHP operation, approximately 2.1% of total electricity demand of Kiheung Respia sewage treatment plant will be achievable. Based on financial analysis, an exploiting MHP is considered economically acceptable with an internal rate of return of 6.1%, net present value of 15,539,000 Korean Won, benefit-cost ratio of 1.08, and payback year of 15.5, respectively, if initial investment cost is 200,000,000 Korean Won.