전자산업 중 반도체 및 LCD 공장과 같이 폐수에 불소가 다량 함유되어 있는 경우, 불소처리를 위하여 과잉으로 사용되는 소석회에 의하여 처리수의 잔류 칼슘농도가 높으며, 높은 잔류칼슘 농도는 폐수의 재이용 시 일반적으로 채택되는 membrane 공정의 불안정한 운전을 초래하게 된다. 따라서, 전자폐수의 재이용을 위하여 신뢰성 있으며, 경제적인 칼슘제거기술의 개발이 절실히 필요한 실정이다. 본 연구에서는 캐비테이션을 이용한 Hyperkinetic Vortex Crystallization(HVC) 공정을 적용하여 폐수중의 칼슘 이온의 calcification 속도를 촉진하였으며, HVC 공정 적용 시 기존 소다회법에 비하여 동일 약품 주입농도에서 31% 높은 칼슘제거효율을 보였다. 또한, 전자산업 폐수의 재이용을 위한 경제적인 칼슘제거효율인 70%를 달성하기 위한 최적 소다회 주입농도는 유입수 대비 530 mg/L였다. 반응조 내 동질의 반응 핵인 calcite seed 농도가 칼슘제거효율에 큰 영향을 주며, 최대 칼슘제거효율을 달성하기 위한 calcite seed 농도는 $800\sim1,200mg$ SSA이였다. 또한, 소다회 주입에 따른 calcite 발생량은 평균 0.30 g SS/g $Na_2CO_3$였다. HVC 케비테이션 생성장치의 설계 시 HVC 장치 통과횟수를 $2\sim5$회 범위에서 안전율을 고려하여 용량선정을 하여야 한다. HVC 공정을 이용한 연속회분식 운전 결과, 유입수 칼슘농도 변화폭은 $74\sim359$ mg/L(평균 173 mg/L)로 매우 컸던 반면, 처리수 칼슘농도는 $30\sim72$ mg/L(평균 49 mg/L)로 비교적 안정적인 처리효율을 보여주었다. 본 연구결과 HVC 공정은 화학약품 사용량의 절감 및 이에 따른 화학슬러지 발생량의 감소를 기대 할 수 있는 친환경기술로 유지관리비를 최소화할 수 있는 장점이 있었다.
본 연구는 단축질소제거(SBNR) 공정의 후속 공정 목적으로 황이용 독립영양탈질을 이용하여 유출수 내 아질산성질소를 제거하고자 황 이용 아질산성질소의 제거특성을 파악하였다. 이를 위하여 알칼리도가 이론적인 양보다 충분한 조건과 부족한 조건에서 아질산성질소와 질산성질소의 황탈질 회분식 실험을 수행하면서 메탄올의 영향을 파악하였다. 충분한 알칼리도와 완전독립영양 조건에서 초기 아질산성질소, 질산성질소 농도가 각각 100 mg N/L에서 배양 27시간 이내에 99% 이상의 질소가 제거 되었다. 탈질 속도는 질산성질소 탈질에 비해 아질산성질소 탈질이 약 1.3배 빨랐다. 아질산성질소 탈질 시 1 g 당 황산염 이온 생성량은 약 4.8 g ${SO_4}^{2-}/g$${NO_2}^-$-N 이었고, 질산성질소 탈질의 경우 13.5 g ${SO_4}^{2-}/g$${NO_3}^-$-N이었다. 알칼리도가 충분하지 않은 조건에서 아질산성질소는 95% 이상 높은 효율을 보였으나 15시간 정도의 긴 유도기가 관찰되었고, 질산성질소 탈질의 경우 배양기간 동안 전혀 탈질이 이루어지지 않았다. 아질산성질소 탈질에서 제거된 아질산성질소 1 g 당 황산염 이온 생성량은 약 2.6 g이었고 알칼리도 소비량은 1.2 g $CaCO_3$이었다. 모든 알칼리도 조건에서 투여한 메탄올의 아질산성질소 제거 영향은 없었다. 본 연구결과를 바탕으로 황이용탈질의 특성을 파악하여 하수 및 폐수의 특성에 맞게 반응조 운전이 이루어지면 기존 탈질 방법의 단점을 보완한 효율적인 탈질 방법이 될 것으로 판단된다.
본 연구는 핵융합 배기가스에서 수소동위원소를 회수하기 위한 공정에 관한 것이다. 이 공정은 불순물을 제거하고 수소동위원소만을 최대로 회수하는 것이 목표이다. 수소와 중수소를 이용한 실험을 통해 수소동위원소의 회수가능성을 확인하고자 하였다. 수소가 포함된 배기가스는 주로 분리막 공정에서 불순물을 제거하여 순수한 수소만을 회수하고, 헬륨-글로우 방전 세척 공정의 배기가스는 초저온 흡착 공정을 이용해서 수소를 회수하였다. 또한 정성적 위험성 평가를 위해 HAZOP 분석을 실시하였다. 시나리오 분석을 위해서 피해 예측 ALOHA 프로그램을 사용하여 영향 범위를 산출하고, 안전성 방안을 모색하였다.
HTPB/AP/Al 계열의 혼합형 열경화 추진제를 적용한 로켓 연구개발에 있어서의 추진제 기계물성 규격을 정하는 일련의 과정을 고찰하고, 공정지수를 통하여 추진제 제조에서의 공정관리를 분석하였다. 이를 근간으로 기계물성간의 종속성을 분석하고 최적화 물성을 제시함으로서 불량률을 제거하는 공정 안전도 향상뿐만 아니라 추진제 그레인의 구조적 안전도 상승에도 기여할 것이다.
이산화탄소는 온실가스로써 대기 중에 축적되어 지구의 온도를 지속적으로 상승시킨다. 화석연료 기반의 전력 생산에서 발생되는 이산화탄소는 상당량을 차지하며, 향후 수십 년간 화석연료 의존도는 지속적으로 증가할 것으로 예상된다. 따라서 대기 중으로 배출되는 이산화탄소를 분리하는 기술개발은 매우 시급하다. 이산화탄소 분리 기술은 크게 전처리, 후처리, 순산소 연소 방식으로 나뉘며, 본 연구에서는 후처리 제거 공정을 중심으로 제올라이트, 활성탄, MOF 소재의 이산화탄소 분리 특성을 비교하고, 공정기술에 대해 분석하였다.
본 연구에서는 반도체 제조공정 내의 습식 대기공조 정화설비에 사용될 화학수용액의 선정과 이를 이용한 대기오염물 정화 모사시험을 수행하였다. 50 ppm의 $NH_3$, SOx, NOx의 제거에 있어서 0.5 M의 이산화망간($KMnO_4$) 수용액은 99% 이상의 제거율을 보였다. $O_3$의 제거율은 $22{\sim}30%$ 수준에서 머물러, 별도의 건식 제거 장치가 필요한 것으로 판단된다. 또한 모든 화학수용액들에 있어 NOx의 제거효율은 $O_3$가 공존할 경우, $NO_2$ 농도 증가로 인해 보다 증가될 수 있었다. 마지막으로 액상분사 시스템을 구성하여 화학수용액들이 공기압 분사식 노즐을 통해 $60\;{\mu}m$ 수준의 미세 액적 형태로 분사됨에 따라, 기-액상간의 반응면적이 증가되어 기상 오염물의 제거효율이 보다 향상될 수 있었다.
Hydrocarbon is required to be converted to pure hydrogen without carbon monooxide (CO) for polymer exchange membran fuel cell (PEMFC) applications. In this paper, CO cleaning processes as the downstream of Dimethyl ehter (DME) autothermal reforming process were performed in micro-reactors. Our study suggested two kinds of water gas shift (WGS) reaction process: High Temperature shift (HTS) - Low Temperature shift (LTS), Middle temperature shift (MTS). Firstly, using perovskite catalyst for MTS was decreased effieiciency since methanation. Using HTS-LTS the CO concentration was decreased about 2% ($N_2$ & $H_2O$ free) with the reaction temperature of $420^{\circ}C$ and $235^{\circ}C$ for HTS and LTS, respectively. As the final stage of CO cleaning process, preferential oxidation (PROX) was applied. The amount of additional oxygen need 2 times of stoichiometric at $65^{\circ}C$. The total conversion reforming efficiency of 75% was gained.
Contact Pattern을 Plasma Etching을 통해 Pattering 공정을 진행함에 있어서 Plasma 내에 존재하는 High Energy Ion 들의 Bombardment 에 의해, Contact Bottom 의 Silicon Lattice Atom 들은 Physical 한 Damage를 받아 Electron 의 흐름을 방해하게 되어, Resistance를 증가시키게 된다. 또한 Etchant 로 사용되는 Fluorine 과 Chlorine Atom 들은, Contact Bottom 에 Contamination 으로 작용하게 되어, 후속 Contact 공정을 진행하면서 증착되는 Ti 나 Co Layer 와 Si 이 반응하는 것을 방해하여 Ohmic Contact을 형성하기 위한 Silicide Layer를 형성하지 못하도록 만든다. High Aspect Ratio Contact (HARC) Etching 을 진행하면서 Contact Profile을 Vertical 하게 형성하기 위하여 Bias Power를 증가하여 사용하게 되는데, 이로부터 Contact Bottom에서 발생하는 Etchant 로 인한 Damage 는 더욱 더 증가하게 된다. 이 Damage Layer를 추가적인 Secondary Damage 없이 제거하기 위하여 본 연구에서는 원자층 식각방법(Atomic Layer Etching Technique)을 사용하였다. 실험에 사용된 원자층 식각방법을 이용하여, Damage 가 발생한 Si Layer를 Secondary Damage 없이 효과적으로 Control 하여 제거할 수 있음을 확인하였으며, 30 nm Deep Contact Bottom 에서 Damage 가 제거될 수 있음을 확인하였다. XPS 와 Depth SIMS Data를 이용하여 상기 실험 결과를 확인하였으며, SEM Profile 분석을 통하여, Damage 제거 결과 및 Profile 변화 여부를 확인하였으며, 4 Point Prove 결과를 통하여 결과적으로 Resistance 가 개선되는 결과를 얻을 수 있었다.
본 연구는 UV와 US를 함께 조사하는 UV/US 연계 공정을 통해 발생하는 시너지 효과를 조사하고, 이를 효과적으로 오염물질 처리 공정에 적용 가능한지에 대하여 연구하였다. US를 조사하는 경우에는 $H_2O_2$의 농도가 지속적으로 증가하지만, UV/US를 동시에 조사한 경우 $H_2O_2$의 농도가 증가하는 속도가 점점 감소하여 일정 농도로 수렴하는 포화속도곡선의 경향을 보였으며, US가 단독으로 조사되었을 때 생성된 $H_2O_2$와 UV/US 연계 공정을 통해 생성된 $H_2O_2$와의 차이가 오염물질 제거율 향상에 시너지 효과를 일으킨다고 판단된다. 시너지 효과를 검증하기 위해 인체에 유해한 영향을 미치는 가소제 중 하나인 bis(2-ethylhexyl) phthalate(DEHP)를 이용하여 제거실험을 실시하였다. UV와 US를 동시에 조사하는 UV/US 연계 공정의 경우 DEHP의 제거 유사 일차반응 속도상수(k1)가 $14.81{\times}10^{-3}min^{-1}$로 UV만 조사하는 경우의 $2.60{\times}10^{-3}min^{-1}$과 US만 조사하는 경우의 $10.34{\times}10^{-3}min^{-1}$보다 더 큰 것을 확인하였다. 이를 통해 UV/US 연계 공정에서 DEHP의 제거가 더 활발하게 일어남을 확인하였으며, 이는 시너지 효과에 의한 것이라 판단된다. 또한 DEHP 제거 유사 일차반응 속도상수 값을 이용하여 시너지 효과를 이론적으로 계산한 결과 시너지 효과 값은 1.15로 나타나 기준값인 1보다 큰 값을 가지므로 시너지 효과가 발생했다고 판단된다.
저저항 배선층으로 쓰일 수 있는 선폭 $0.5{\mu}m$, 70nm 높이의 폴리실리콘 패턴에 $10nm-Ni_{1-x}Co_x$(x=0.2, 0.6, and 0.7)의 금속 박막을 열증착법으로 성막하고 쾌속 열처리 (RTA) 온도를 $700^{\circ}C$와 $1000^{\circ}C$로 달리하여 실리사이드화 공정을 실시하여 상부에 니켈코발트 실리사이드를 형성시켰다 이때의 미세구조를 확인하고 FIB (focused ion beam)를 활용하여 저에너지 조건 (30kV-10 pA-2 sec)에서 배선층을 국부적으로 조사하여 실리사이드 층의 선택적 제거 가능성을 확인하였다. 실험 범위내의 실리사이드화 온도 범위와 NiCo 상대 조성 범위에서 주어진 FIB 조건으로 선택적으로 저저항 실리사이드 층의 제거가 가능하였으나, 상대적으로 Co 함유량이 많은 실리사이드는 배선층 내부에서 기포가 발생하였으며, 이러한 기포로 인해 실리사이드 층만의 국부적 제거는 불가능하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.