• Title/Summary/Keyword: $CO_2$/propane

Search Result 80, Processing Time 0.027 seconds

Synthesis of Montmorillonite/Poly(acrylic acid-co-2-acrylamido-2-methyl-1-propane sulfonic acid) Superabsorbent Composite and the Study of its Adsorption

  • Zhu, Linhui;Zhang, Lili;Tang, Yaoji
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1669-1674
    • /
    • 2012
  • A novel superabsorbent composite was prepared by intercalation polymerization of acrylic acid (AA) and 2-acrylamido-2-methyl-1-propane sulfonic acid (AMPS) in the presence of montmorillonite (MMT), using ammonium persulfate (APS) as an initiator and $N,N'$-methylenebisacrylamide (MBA) as a cross linker. The superabsorbent composite was characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). Maximum absorbency of the composite in distilled water and 0.9% sodium chloride solution was 722 and 108 g/g, respectively. The composite was used for removal of heavy metal ions from aqueous solutions. Maximum amount of adsorption for $Ni^{2+}$, $Cu^{2+}$ and $Pb^{2+}$ was 211.0, 159.6 and 1646.0 mg/g, respectively, and the adsorption was in accordance with both Langmuir and Freundlich model. The composite could be regenerated and reused in wastewater treatment.

Phase Behavior on the Binary and Ternary System of Poly(propyl acrylate) and Poly(propyl methacrylate) with Supercritical Solvents (초임계 용매를 포함한 Poly(propyl acrylate)와 Poly(propyl methacrylate)의 이성분 및 삼성분계에 관한 상거동)

  • Byun, Hun-Soo;Lee, Ha-Yeun
    • Korean Chemical Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.703-708
    • /
    • 2002
  • High pressure phase behavior data for poly(propyl acrylate) and poly(propyl methacrylate) with supercritical $CO_2$, ethylene, propane, butane, propylene, 1-butene, dimethyl ether, and $CHClF_2$ were measured in the temperature range from $23^{\circ}C$ to $186^{\circ}C$ and at pressures up to 2,400 bar. The cloud point were obtained at dissolved pressure below 2,070, 1,400, 1,880, 450, 2,200, 250, and 150 bar for poly(propyl acrylate) in supercritical $CO_2$, ethylene, propane, propylene, butane, 1-buthen, and dimethyl ether, respectively. The temperature range is $23-175^{\circ}C$. The poly(propyl methacrylate) does not dissolve in $CO_2$ at temperature of $240^{\circ}C$ and pressure 2,900 bar. The poly(propyl methacrylate)-propane, poly(propyl methacrylate)-butane, poly(propyl methacrylate)-propylene, poly(propyl methacrylate)-1-butene, and poly(propyl methacrylate)-$CHClF_2$ systems were dissolved at the pressures less than 2,390 bar, below 2,100 bar, below 570 bar, below 310 bar, below 300 bar, and below 170 bar, respectively. The temperature range shows from 40 to $186^{\circ}C$. The phase behavior of between binary poly(propyl acrylate)-$CO_2$ and poly(propyl acrylate)-dimethyl ether system were measured from upper critical solution temperature region to lower critical solution temperature region with added dimethyl ether concentrations of 5, 15 and 50 wt%.

Removal of Paraffin Wax from Ceramic Injection Mold Using Supercritical Carbon Dioxide (세라믹 사출성형체로부터 초임계이산화탄소를 이용한 파라핀왁스의 제거)

  • Kim, Dong-Hyun;Hong, Seung-Tae;Yoo, Ki-Pung;Lim, Jong-Sung
    • Clean Technology
    • /
    • v.14 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • Removal of paraffin wax from a ceramic injection mold using supercritical $CO_2$ has been studied. The paraffin wax is used as a binder in the ceramic injection molding process. The effects of pressure, temperature and flow rate of supercritical $CO_2$ on the removal of the paraffin wax were investigated. The removal rates were measured with various flow rates of $CO_2$ in the range of 328.15 - 348.15 K and 15 - 30 MPa. The removal rate of paraffin wax increased as the pressure increased. In the effect of temperature, the paraffin wax was effectively removed over 329.15K (melting point of paraffin wax), however, the efffct of temperature was not significant when the temperature was further increased. The increase of $CO_2$ flow rate also affected the removal of paraffin wax. However, the effect of flow rate was not observed when the flow rate reached a certain value. Propane was used as a co solvent in order to remove the paraffin wax effectively. When the propane was added to the $CO_2$, the removal efficiency was improved. The paraffin wax was completely removed from the ceramic injection mold without any change in their shape and the structure.

  • PDF

Preparation and Properties of Novel Biodegradable Hydrogel based on Cationic Polyaspartamide Derivative

  • Moon, Jong-Rok;Kim, Bong-Seop;Kim, Ji-Heung
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.7
    • /
    • pp.981-985
    • /
    • 2006
  • Novel copolymers consisting of poly(2-hydroxyethyl aspartamide-co-N,N'-dimethyl-1,3-propane aspartamide) (PHEA-DPA) were prepared from polysuccinimide (PSI), which is the thermal polycondensation product of aspartic acid, via a ring-opening reaction with N,N'-dimethyl-1,3-propane diamine (DPA) and ethanolamine. The prepared water-soluble copolymer was then crosslinked by reacting it with hexamethylene diisocyanate to provide the corresponding gel. The swelling behavior and morphology of the crosslinked hydrogels were investigated. The degree of swelling decreased with increasing crosslinking reagent due to the higher crosslinking density. It was also confirmed that the swelling property is affected by pH. At low pH (< pH 4), swelling is increased due to the ionization of DPA with a tertiary amine moiety. In addition, a reversible swelling and de-swelling behavior was demonstrated by adjusting the pH of the solution. The prepared hydrogels showed a well-interconnected microporous structure with regular 5-20 $\mu$m sized pores.

Hydrogen production by catalytic decomposition of propane-containing methane over N330 carbon black in a fluidized bed (유동층 반응기에서 N330 카본 블랙 촉매를 이용한 프로판을 포함한 메탄의 촉매분해에 의한 수소 제조)

  • Lee, Seung-Chul;Lee, Kang-In;Han, Gui-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.761-764
    • /
    • 2009
  • The thermocatalytic decomposition of methane is an environmentally attractive approach to $CO_2$-free production of hydrogen. The fluidized bed was proposed for the continuous withdraw of product carbon from the reactor. The usage of carbon black was reported as stable catalyst for decomposition of methane. Therfore, carbon black (DCC-N330) is used as catalyst. A fluidized bed reactor made of quartz with 0.055 m I.D. and 1.0 m in height was selected for the thermo-catalytic decomposition. The porpane-containg methnae decomposition reaction was operated at the temperature range of 850-900 $^{\circ}C$ methane gas velocity of 1.0 $U_{mf}$ and the operating pressure of 1.0 atm. In this work, propane was added as reactant to make methane conversion higher. Therefore we compared with methane conversion and pre-experiment methane conversion that using only methane as reactant. The carbon black, after experiment, was measured in particle size and surface area and analyzed surface of the carbon black by TEM.

  • PDF

Effects of the Gas Composition on Internal Oxidation Characteristics of Low Carbon Alloy Steel during Carburizing in Nitrogen-Propane-Air Atmospheres (질소-프로판-공기분위기에서 저탄소 합금강의 침탄시 내부산화 특성에 미치는 가스조성의 영향)

  • Roh, Y.S.;Kim, S.M.;Kim, Y.H.;Kim, H.K.;Lee, S.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.4 no.4
    • /
    • pp.53-60
    • /
    • 1991
  • This study has been performed to investigate into the internal oxidation characteristics of low carbon steel with respect to the added amount of air in nitrogen-propane atmosphere after gas carburizing for various times at $930^{\circ}C$. The results obtained from the experiment are as follows ; (1) Optical micrographs have shown that the internal oxidation is unlikely to occur in the gas atmosphere without air and that oxidized zone in the outer surface layer is formed in the gas atmosphere with air revealing that the depth of oxidized zone increases with increasing the added amount of air. (2) The formation of internally oxidized zone in the outer surface layer has been found to be inhibited as Ni content increases, i. e, the amount of alloying element increases. (3) The depth of oxidation has been measured to increase with almost parabolically gas carburizing time of up to 6 hours.

  • PDF

Activity test of post-reforming catalyst for removing the ethylene in diesel ATR reformate (디젤 자열개질 가스 내 포함된 $C_2H_4$ 제거를 위한 후개질기 촉매 활성 실험)

  • Yoon, Sang-Ho;Bae, Joong-Myeon;Lee, Sang-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.218-221
    • /
    • 2009
  • Solid oxide fuel cells (SOFCs), as high-temperature fuel cells, have various advantages. In some merits of SOFCs, high temperature operation can lead to the capability for internal reforming, providing fuel flexibility. SOFCs can directly use CH4 and CO as fuels with sufficient steam feeds. However, hydrocarbons heavier than CH4, such as ethylene, ethane, and propane, induce carbon deposition on the Ni-based anodes of SOFCs. In the case of the ethylene steam reforming reaction on a Ni-based catalyst, the rate of carbon deposition is faster than among other hydrocarbons, even aromatics. In the reformates of heavy hydrocarbons (diesel, gasoline, kerosene and JP-8), the concentration of ethylene is usually higher than other low hydrocarbons such as methane, propane and butane. It is importatnt that ethylene in the reformate is removed for stlable operation of SOFCs. A new methodology, termed post-reforming was introduced for removing low hydrocarbons from the reformate gas stream. In this work, activity tests of some post-reforming catalysts, such as CGO-Ru, CGO-Ni, and CGO-Pt, are investigated. CGO-Pt catalyst is not good for removing ethylene due to low conversion of ethylene and low selectivity of ethylene dehydrogenation. The other hand, CGO-Ru and CGO-Ni catalysts show good ethylene conversion, and CGO-Ni catalyst shows the best reaction selectivity of ethylene dehydrogenation.

  • PDF

Development of Simplified Formulas to Predict Deformations in Plate Bending Process with Oxy-Propane Gas Flame (산소-프로판 가스 곡가공 공정에서 강판의 변형예측을 위한 계산식 개발)

  • Bae, Kang-Yul;Yang, Young-Soo;Hyun, Chung-Min;Cho, Si-Hun
    • Journal of Welding and Joining
    • /
    • v.25 no.2
    • /
    • pp.70-75
    • /
    • 2007
  • Simplified mathematical formulas are presented to predict deformations during the plate forming process when the heating parameters are given. To obtain the formulas, firstly, the thermal analysis for steel plate is performed, and the thermo-mechanical analysis is followed with actual heating conditions. The analyses have been carried out by the commercial software MARC, which is programmed based on the FEM. Secondary, the results of the mechanical analysis are synthesized with their variables for a statistical approach, which results in simplified formulas. The results of the analysis are well compared with those of experimental measurements.

Development of an Inert Gas Water Mist System -A Numerical Study on Ventilation of the Fire Test Room- (불활성가스 미분무소화설비의 개발 -화재시험실의 급기에 관한 수치연구-)

  • Park, Woe-Chul;Jeong, Lee-Gyu
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.1
    • /
    • pp.25-30
    • /
    • 2008
  • A Numerical study was carried out for a propane gas pool fire in the fire test room of $2.5m{\times}2.0m{\times}2.5m$ for testing a inert gas water mist system, to investigate a possible under-ventilation in the fire test room. For the fire sizes of 60 kW and 120 kW, changes in the temperature and CO concentration with and without a window were investigated. It was confirmed that the influence of the window on the distributions of temperature and CO concentration was small in the two fire sizes, and hence the under-ventilation was not occurred in the room.

  • PDF